
Final Report

 Blockchain is a technology that achieves the Point-to-Point transport, every node

in the network share the same information, which builds a highly-decentralized

system, based on cryptography.

 Modern supply chains are inheretly complex, consists of disjointed modules

follows a specific logic and geographical distribution, these entities competing each

other to serve consumers. Diverse nation cultures, policys and emotional human

behaviours make it impossible to prevent or hold back ithe likely accident occurs in

supply-chain in time. Inefficient transactions, fraud and poorly-performing supply

chains, lead to greater trust shortage. So, something that can be traceable is becoming

an increasingly urgent requirement, and Blockchain take the role.

 The ID of the products will be recorded on the blockchain network at the moment

being put into the production, since that the whole process from industry to market

will be transparent to you. It helps us discover the accident quickly, and once

problems arised, you can prevent the product from market in time.

 The commonly used computer language inculdes C/C++, Java, python, Ruby and

Go. I prefer Go in dividually. Since python style code is also a pratical language and

easier to understand, I will explain the Blockchain building process in python style

code.

 As we see, BlockChain itself is a kind of data structure, and though there is still a

long way to go in before BlockChain can be truly used in the service industry, the

core algorithm of BlockChain is not very complex, but what makes it become one of

the hot topic in our informational era?(the other one is machine learning).

BlockChain is truly not the innovation of technology, but a product of the progress of

people’s ideas that pursuing a better individual life and the new need of the era

Now, I will show the building process of blockchain to you in code.

In this case, I define a Block class to build the data structure of Blockchain.

(Nevermind, Blockchain it self is a kind of data structure.)

import hashlib as hasher#The haslhib is a package that helps encrypt the public key and

private key.

class Block:

 def __init__(self, index, timestamp, data, previous_hash):

 self.index = index

 self.timestamp = timestamp#时间戳

 self.data = data

 self.previous_hash = previous_hash

self.hash = self.hash_block()

 def hash_block(self):

 sha = hasher.sha256()

 sha.update(str(self.index) +

 str(self.timestamp) +

 str(self.data) +

 str(self.previous_hash))

 return sha.hexdigest()

We’ll create a function that simply returns a genesis block to make things easy. This

block is of index 0, and it has an arbitrary data value and an arbitrary value in the

“previous hash” paramter.

Look, that’s the function that create the genesis block, the details of the function just

return a Block which has been defined well above. Do you know what is the genesis

block. The genesis block is the head of the Blockchain, the first Block. The hash_block

encrypt the index ,timestamp,data and previous_hash.

import datetime as date

def create_genesis_block():

 # Manually construct a block with

 # index zero and arbitrary previous hash

 return Block(0, date.datetime.now(), "Genesis Block", "0")

Now that we’re able to create a genesis block, we need a function that will generate succeeding

blocks in the blockchain. This function will take the previous block in the chain as a parameter,

create the data for the block to be generated, and return the new block with its appropriate data.

When new blocks hash information from previous blocks, the integrity of the blockchain increases

with each new block. If we didn’t do this, it would be easier for an outside party to ”change the

past” and replace our chain with an entirely new one of their own. This chain of hashes acts as

cryptographic proof and helps ensure that once a block is added to the blockchain it cannot be

replaced or removed. Can you see the data? The data is “Hey I’m block”. That is a kind of linear

structure look like this : 1,2..... The index symbols the position of the block in corresponding

blockchain. Every time I create a new block, I will transmit the last_block to the “next_block”

function.

def next_block(last_block):

 this_index = last_block.index + 1

 this_timestamp = date.datetime.now()

 this_data = "Hey! I'm block " + str(this_index)

 this_hash = last_block.hash

 return Block(this_index, this_timestamp, this_data, this_hash)

That’s the majority of the hard work. Now, we can create our blockchain. In our case,

the blockchain itself is a simple python list, which is similar to the “array” in C. The

first element of the list is the genesis block. And of course, we need to add the

succeeding blocks. Because SnakeCoin is the tiniest blockchain, we’ll only add 20

new blocks. We can do this with a “for” loop.
Create the blockchain and add the genesis block

blockchain = [create_genesis_block()] #similar to the “array” in C.

previous_block = blockchain[0]

How many blocks should we add to the chain

after the genesis block

num_of_blocks_to_add = 20

Add blocks to the chain

for i in range(0, num_of_blocks_to_add):

 block_to_add = next_block(previous_block)

 blockchain.append(block_to_add)#The core code add the new block to the list.

 previous_block = block_to_add

 # Tell everyone about it!

 print "Block #{} has been added to the blockchain!".format(block_to_add.index)

 print "Hash: {}\n".format(block_to_add.hash)

Running Screenshot:

Following is the most common design of BlockChain in python style code.

from time import time

import json

import hashlib

from flask import Flask, jsonify ,request

from uuid import uuid4

from urllib.parse import urlparse

import requests

class Blockchain():

 def __init__(self):

 #Initializes the instance variables of the Blockchain class.

 self.chain=[] -------------------

------------------------[1]

 self.current_transactions={}

 self.nodes=set()

 self.to_be_mined={}

 self.new_block(proof=100,previous_hash=1) ------------------------

------[2]

 def register_node(self,address):

 #Registers the address of a new node.

 parsed_url=urlparse(address)

 self.nodes.add(parsed_url.netloc)

 def register_node(self,address):

 #Registers the address of a new node.

 parsed_url=urlparse(address)

 self.nodes.add(parsed_url.netloc)

 def new_block(self,proof,previous_hash=None): --------------------

---------[3]

 #Adds new block to existing chain.

 block={

 'index':len(self.chain),

 'timestamp':time(),

 'transactions':self.to_be_mined,

 'proof':proof,

 'previous_hash':previous_hash

 }

 self.to_be_mined={}

 self.chain.append(block)

------------------------------------[4]

 return block

 def

new_transaction(self,supplier_manu,requested_hash=None,sent_hash=None,received_hash=Non

e,requested_payment=None,sent_payment=None,received_payment=None):

 #Adds a transaction to the list of current transactions to be

 #added to the next block .Returns the index of the block the

 #transaction is going to be added to.

 key=supplier_manu

 if(key not in self.current_transactions):

 self.current_transactions[key]={}

 if(requested_hash):

 self.current_transactions[key]['requested_hash']=requested_hash

 if(sent_hash):

 self.current_transactions[key]['sent_hash']=sent_hash

 if(received_hash):

 self.current_transactions[key]['received_hash']=received_hash

 if(requested_payment):

 self.current_transactions[key]['requested_payment']=requested_payment

 if(sent_payment):

 self.current_transactions[key]['sent_payment']=sent_payment

 if(received_payment):

 self.current_transactions[key]['received_payment']=received_payment

 return self.last_block['index']+1

 def proof_of_work(self,last_proof):

 #calculates the valid proof using our Proof Of Work Algorithm

 proof=0

 while not self.valid_proof(proof,last_proof) :

 proof=proof+1

 return proof

 def valid_chain(self,chain):

 #Function to check if a chain is valid

 #(checks the hashes and the proof of works of all the blocks of a chain)

 #Returns True if valid chain else returns False

 curr_block=chain[0]

 last_proof=curr_block['proof']

 last_hash=self.hash(curr_block)

 for i in range(1,len(chain)):

 curr_block=chain[i]

 if(curr_block['previous_hash']!=last_hash):

 return False

 if(not self.valid_proof(curr_block['proof'],last_proof)):

 return False

 last_proof=curr_block['proof']

 last_hash=self.hash(curr_block)

 return True

 def mine(self):

 last_block=self.last_block

 last_proof=last_block['proof']

 proof=self.proof_of_work(last_proof)

 #blockchain.new_transaction(sender="0",reciever=node_id,amount=1)

 prev_hash=self.hash(last_block)

 new_block=self.new_block(proof,prev_hash)

 def consensus(self):

 #Consensus algorithm implementation

 #Gets the longest valid chain among all the nodes.

 #Returns True if chain is changed and False if not.

 all_nodes=self.nodes

 max_chain_length=len(self.chain)

 new_chain=None

 for node in all_nodes:

 response=requests.get(f'http://{node}/chain')

 if response.status_code==200:

 length=response.json()['length']

 chain=response.json()['chain']

 if length>max_chain_length and self.valid_chain(chain) :

 max_chain_length=length

 new_chain=chain

 if new_chain:

 self.chain=new_chain

 return True

 return False

 def check_transactions(self,supplier_manu):

 temp=self.current_transactions.pop(supplier_manu,None)

 if(temp['requested_hash']==temp['sent_hash']

 and temp['sent_hash']==temp['received_hash']

 and temp['requested_payment']==temp['sent_payment']

 and temp['sent_payment']==temp['received_payment']):

 self.to_be_mined[supplier_manu]=temp

 self.mine()

 return True

 return False

 @staticmethod

 def valid_proof(proof,last_proof):

 #Returns True if a proof of work is valid else returns False.

 #For proof to be valid , when hashed with the last proof ,

 #the result should have four zeros at the end (0000) .

 temp=f'{last_proof}{proof}'.encode()

 temp=hashlib.sha256(temp).hexdigest()

 if(temp[:4])=="0000":

 return True

 else :

 return False

 @staticmethod

 def hash(block):

 #Calculates the hash of a block using the SHA256 algorithm.

 #Returns the hash in hexadecimal.

 block=json.dumps(block,sort_keys=True).encode()#needs to be encoded because

hashlib.sha256() can only hash bytes .

 return hashlib.sha256(block).hexdigest()

 @property

 def last_block(self):

 #returns the last block of the chain.

 return self.chain[-1]

app=Flask(__name__)#Making blockchain API using Flask microframework

node_id=str(uuid4()).replace('-','')

blockchain=Blockchain()

#Whenever we want to register new nodes , we send a post request

#to the server at /nodes/register relative URL with the address

#of the node in the POST request's body.

@app.route('/nodes/register',methods=['POST'])

def register():

 values=request.get_json()

 nodes=values.get("nodes")

 if nodes is None:

 return "Error",400

 for node in nodes:

 blockchain.register_node(node)

 response={

 'message':'New nodes have been added',

 'nodes_list':list(blockchain.nodes)

 }

 return jsonify(response),201

#If we want to create a consensus about the validity of the current

#blockchain , we send a GET request at the /nodes/resolve relative

#URL . It uses the Blockchain.consensus() method to download the chains

#of all the nodes in the network and sets the longest valid chain as the

#correct chain.

@app.route('/nodes/resolve',methods=['GET'])

def resolve():

 temp=blockchain.consensus()

 response={}

 if temp:

 response={

 'message':'Chain was replaced',

 'chain':blockchain.chain

 }

 else :

 response={

 'message':'Chain not replaced',

 'chain':blockchain.chain

 }

 return jsonify(response),200

#Simply retrieves the current copy of the blockchain at the node by sending

#a GET request at /chain relative URL.

@app.route('/chain',methods=['GET'])

def full_chain():

 response={

 'chain':blockchain.chain,

 'length':len(blockchain.chain)

 }

 return jsonify(response),200

@app.route('/Manu/Request',methods=['POST'])

def manu_request():

 values=request.form

 required=['supplier_manu','requested_hash']

 if not all(k in values for k in required):

 return "Missing Data",400

index=blockchain.new_transaction(values['supplier_manu'],requested_hash=values['request

ed_hash'])

 response={'message':f'Manufacturer has sent request'}

 return jsonify(response),201

@app.route('/Supplier/Sent',methods=['POST'])

def supplier_sent():

 values=request.form

 required=['supplier_manu','sent_hash','requested_payment']

 if not all(k in values for k in required):

 return "Missing Data",400

index=blockchain.new_transaction(values['supplier_manu'],sent_hash=values['sent_hash'],

requested_payment=values['requested_payment'])

 response={'message':f'Supplier has sent requested goods and payment request to

manufacturer'}

 return jsonify(response),201

@app.route('/Manu/Received',methods=['POST'])

def manu_received():

 values=request.form

 required=['supplier_manu','received_hash']

 if not all(k in values for k in required):

 return "Missing Data",400

index=blockchain.new_transaction(values['supplier_manu'],received_hash=values['received

_hash'])

 response={'message':f'Manufacturer has received the sent goods'}

 return jsonify(response),201

@app.route('/Manu/Sent',methods=['POST'])

def manu_sent():

 values=request.form

 required=['supplier_manu','sent_payment']

 if not all(k in values for k in required):

 return "Missing Data",400

index=blockchain.new_transaction(values['supplier_manu'],sent_payment=values['sent_paym

ent'])

 response={'message':f'Manufacturer has sent the requested payment to the supplier'}

 return jsonify(response),201

@app.route('/Supplier/Received',methods=['POST'])

def Supplier_received():

 values=request.form

 required=['supplier_manu','received_payment']

 if not all(k in values for k in required):

 return "Missing Data",400

index=blockchain.new_transaction(values['supplier_manu'],received_payment=values['recei

ved_payment'])

 temp=blockchain.check_transactions(values['supplier_manu'])

 if temp :

 response={'message':f'block has beeb mined'}

 return jsonify(response),200

 else:

 response={'message':f'transaction has been cancelled'}

 return jsonify(response),200

@app.route('/test',methods=['GET'])

def test():

 response={

 'current_transactions':blockchain.current_transactions

 }

 return jsonify(response),200

if __name__=='__main__':

 app.run(host='0.0.0.0',port=5000)

[1] define the python list of BlockChain’s chain.

[2] create the genesis block.

[3] define the function that adds new block to BlockChain

[4] the core code sentence that add new block to BlockChain(python list)

SupplyChain combined with Block-chain

If you want to combine the Blockchain and supply-chain, all you need to

do is just define the data of genesisBlock, and obtain the information of

product you want to save. Then you can begin blockchain with function

“makeBlock” happily!

Core Code

name=str(“bolatoglouAE”)

state={u’Company’:name}

genesis_Block_state=state

genesis_Block_Contents={u’blockNumber’:0,u’parent_Hash’:None,u’entire_Count’:1,u’entry’

:genesis_Block}

genesis_Hash=hashMe(genesis_Block_Contents)

genesis_Block={u’hash’:genesis_Hash,u’contents’:genesis_Block_Contents}

genesis_Block_Str=json.dumps(genesis_Block,sort_keys=True)

chain=[genesisBlock]

new = makeBlock(entry1,chain)

The “chain” is the genesisBlock, and entry1 is the information of block

you want to save. Then a supply-chain node is successfully added to the

Blockchain.

Will blockchain technology revolutionize excipient supply chain management?

1.Summarize the reasons why Blockchain is considered an ideal solution for supply chain

operations in pharmaceutical bussiness.

First, Blockchain is based on asymmetric encryption modulo mathematics, which is hard to decrypt.

Second, Blockchain is a simple way of passing information, which constructs a direct access (P2P)

between every two nodes in the supply-chain, and outlaws the intermediaries.

Finally, the block is verified by multiple computers distributed around the net, which makes it

impossible to alter the record individually.

2.Why was the paper rejecting the idea that Blockchain will replace traditional quality and

auditing processes?

Because traditional quality and auditing processes includes the physical goods, and Blockchain only

being responsible for the electronic record. In fact, as each of the supply chain can verify that

appropriate audits have been undertaken by appropriately credentialed authorities and can hereby

‘trust’ the whole transactional record.

In other words, a transacted record is computerized and 'blockchained' does not necessarily imply

that its physical world counterpart material of commerce has not been tampered with; all it implies

is that the transaction record cannot, and has not, been tampered with.

All in all, the blockchain in supply-chain itself is a product of traditional process such as

appropriate audit process. Blockchain ensures the information can’t be falsified or altered after the

event, but can not make sure that the physical goods is qualified before recording.

3.What processes/methods/techniques, along with Blockchain, can you think of to enforce

quality audit in excipient supply chain?

When it comes to processes/methods/techniques along with Blockchain that enforce quality audit in

excipient supply chain, we can talk about iot sensors and smart contracts.

First, according to the data obtained by iot sensors and machine tools, we can monitor production

process and product quality in real time. In this way, suppliers and manufacturers can discover

errors in time. Second, the data which has been audited will be uploaded to the blockchain. Finally,

we can use smart contract to evaluate the quality of data, process and product, and send back the

results to suppliers, manufacturers and retailers.

References:

《Will blockchain technology revolutionize excipient

supply chain management?》

《A Blockchain-based Supply Chain Quality Management Framework》

