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Solution for Problem 1

(a) Assume there are N finite numbers for x. For each x, the g(x) is deterministic
that:

H(g(x)|x) = −
∑
x∈X

p(g(x), x) · log2 p(g(x)|x)

= −
∑
x∈X

p(g(x), x) · loga

p(g(x), x)
p(x) )

= −
∑
x∈X

p(g(x), x) · loga

p(x)
p(x)) g(x) is deterministic by x, p(g(x),x)=p(x)

= −
∑
x∈X

p(g(x), x) · loga 1)

= 0

(b)

H(x|g(x)) = −
∑
x∈X

p(g(x), x) · log2 p(x|g(x))

≥ 0 since probability 0 ≤p(x—g(x))≤ 1, log2 p(x|g(x)) ≤ 0

(c)

H(g(x), x) = H(x) + H(g(x)|x)
= H(x) + 0
= H(x)

(d)

H(g(x), x) = H(g(x)) + H(x|g(x))
⇒ H(g(x), x) ≥ H(g(x)) (b)H(x|g(x) ≥ 0)
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(e) According to (c) and (d)

H(x) = H(g(x), x) ≥ H(g(x))
⇒ H(x) ≥ H(g(x))

The condition for the inequality(e) is that g(x) can be deterministic by x

(f) • g(x) = 2x, H(x)=H(g(x)), because g(x) is an one-to-one map then
H(x|g(x)) = 0.

• g(x) = cos x, H(x) > H(g(x)), because x is not a function of g(x) then
H(x|g(x)) > 0

□

Solution for Problem 2

(a)

H(X, Y |Z) = −
∑
z∈Z

p(z) · H(X, Y |z = Z)

= −
∑
z∈Z

p(z) ·
∑

x∈X,y∈Y
p(x, y|z = Z) log p(x, y|z = Z)

= −
∑

x∈X,y∈Y,z∈Z
p(x, y, z) log p(x, y|z = Z)

= −
∑

x∈X,y∈Y,z∈Z
p(x, y, z) log p(x, y, z)p(x, z)

p(x, z)p(z)

= −
∑

x∈X,y∈Y,z∈Z
p(x, y, z)(log p(x, y, z)

p(x, z) + log p(x, z)
p(z) )

= −
∑

x∈X,y∈Y,z∈Z
p(x, y, z)(log p(x, y, z)

p(x, z) ) −
∑

x∈X,y∈Y,z∈Z
p(x, y, z)(log p(x, z)

p(z) )

= −
∑

x∈X,y∈Y,z∈Z
p(x, y, z) log p(y|x, z) −

∑
x∈X,y∈Y,z∈Z

p(x, y, z) log p(x|z)

= H(Y |X, Z) + H(X|Z)
⇒ H(X, Y |Z) ≥ H(X|Z) The entropy H(Y |X, Z) ≥0

(b)

I(X, Y ; Z) = H(X, Y ) − H(X, Y |Z)
≤ H(X, Y ) − H(X|Z)
= H(X) + H(Y |X) − H(X|Z) generated by (a) H(X, Y |Z) ≥ H(X|Z)
≤ H(X) − H(X|Z)
= I(X; Z)
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(c)

H(X, Y, Z) − H(X, Y ) = H(X, Z) − H(X) + H(Y |X, Z) − H(Y |X)
= H(X, Z) − H(X) − I(Y ; Z|X)
≤ H(X, Z) − H(X) (sinceI(Y ; Z|X) ≥ 0)

(d)

I(Z; Y |X) − I(Z; Y ) + I(X; Z)
= H(Z|X) − H(Z|X, Y ) − (H(Z) − H(Z|Y )) + (H(Z) − H(Z|X))
= H(Z|Y ) − H(Z|X, Y )
= I(Z; X|Y )
= I(X; Z|Y )

□

Solution for Problem 3

(a)

E(X) =
∫

XdP

=
∫

xdP (x)

≥
∞∫
δ

xdP (x)

≥ δ

∞∫
δ

dP (x)

= δP (X ≥ δ)

⇒ P (X ≥ δ) ≤ E(X)
δ

(b)

Pr[(Y − µ)2 ≥ ϵ2] ≤ E[(Y − µ)2]
ϵ2 apply X = (Y − µ)2 in 3(a)

Pr[(Y − µ)2 ≥ ϵ2] ≤ σ2

ϵ2

⇒ Pr[|Y − µ| ≥ ϵ] ≤ σ2

ϵ2
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(c)

E(Zn) = E( 1
n

n∑
k=1

Zk)

= 1
n

n∑
k=1

E(Zk)

= µ

D(Zn) = D( 1
n

n∑
k=1

Zk)

= 1
n2

n∑
k=1

D(Zk)

= σ2

n

Pr[|Zn − µ| ≥ ϵ] ≤ σ2

nϵ2 apply Y = Zn in 3(b)

(d) Apply weak law of large numbers, lim
n→∞

Zn = µ

Assume Zi = − log p(Xi) as the probability of random variable X ∼ p(x)
Then, lim

n→∞
Zn = lim

n→∞

n∑
i=1

− log p(Xi)
n

= lim
n→∞

− log p(X1,X2...Xn)
n

= E(− log p(X)) =
H(X) in probability.

□

Solution for Problem 4

1

(a) Assume f(x) = x log x which is a convex and non-decreasing function. a =
n∑

i=1
ai, b =

n∑
i=1

bi

n∑
i=1

ai log ai

bi

=
n∑

i=1
bif(ai

bi

)

= b
n∑

i=1

bi

b
f(ai

bi

)
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≥ bf(
n∑

i=1

bi

b

ai

bi

) the f(x) is convex, Jensen inequality

= bf(
n∑

i=1

ai

b
)

= bf(a

b
)

= (
n∑

i=1
ai) · log

n∑
i=1

ai

n∑
i=1

bi

Equality is true, if and only if x is constant in the strictly convex function
f(x) which is not linear at the same time, that when ai

bi
is constant

(b) • D(p||q) = ∑
x∈X

p(x) · log p(x)
q(x)

D(λp1 + (1 − λ)p2||λq1 + (1 − λ)q2)

=
∑
x∈X

(λp1 + (1 − λ)p2) · log λp1 + (1 − λ)p2

λq1 + (1 − λ)q2

≤
∑
x∈X

[λp1 · log p1

q1
+ (1 − λ)p2 log p2

q2
] ,apply 4(a)

= λ
∑
x∈X

p1 · log p1

q1
+ (1 − λ)

∑
x∈X

p2 log p2

q2

= λD(p1||q1) + (1 − λ)D(p2||q2)

• To prove:
H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2) (0 ≤ λ ≤ 1) Assume
X be a continuous random variable with probability density function f(x),
assume u(x) is an uniform distribution on X

H(p) = −
∫

X
f(x) log f(x)dx

= −
∫

X
f(x) log f(x)

u(x) · u(x)

= −
∫

X
f(x) log f(x)

u(x) −
∫

X
f(x) log u(x)

= −D(f ||u) −
∫

X
f(x) log 1

|X|
= log(|X|) − D(f ||u)
⇒ log|X| − H(f) = D(f ||u)

Apply 4(a) then

D(λf1 + (1 − λ)f2||λµ + (1 − λ)µ) ≤ λD(f1||u) + (1 − λ)D(f2||u)
log |X| − H(λf1 + (1 − λ)f2) ≤ λ log |X| − λH(f1) + (1 − λ) log |X| − (1 − λ)H(f2)
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− H(λf1 + (1 − λ)f2) ≤ −λH(f1) − (1 − λ)H(f2)
H(λf1 + (1 − λ)f2) ≥ λH(f1) + (1 − λ)H(f2)

That H(f) is a concave function of f, When the random variable is discrete,
the same reason can be proved.

□
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Solution for Problem 1

(a) According to the question conditions,

fX1(x) = 1
3 , 0.5 ≤ x ≤ 3.5 (1)

fX2(x) =



= 1
3 , x = 1

= 1
3 , x = 2

= 1
3 , x = 3

(2)

fY1(y) = 1
3 , 0.5 ≤ y ≤ 3.5 (3)

fY2(y) =



= 2
5 , 0.75 ≤ y ≤ 1.25

= 2
5 , 1.75 ≤ y ≤ 2.25

= 2
5 , 2.75 ≤ y ≤ 3.25

(4)

So that the entropy is calculated as follows:

HX1 = −
3.5∫

0.5

fX1(x) log2 fX1(x)dx

= −
3.5∫

0.5

1
3 log2

1
3dx
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= log2 3

HX2 = −
∑

x∈X2

fX2(x) log2 fX2(x)

= −
∑

x∈X2

1
3 log2

1
3

= log2 3

HY1 = −
3.5∫

0.5

fY1(y) log2 fY1(y)dy

= −
3.5∫

0.5

1
3 log2

1
3dy

= log2 3

HY2 = −
∫
Y2

fY2(y) log2 fY2(y)dy

= −
1.25∫

0.75

2
3 log2

2
3dy −

2.25∫
1.75

2
3 log2

2
3dy −

3.25∫
2.75

2
3 log2

2
3dy

= log2
3
2

(b)

fX1,X2(x) =



= 1
3 , 0.5 ≤ x1 ≤ 1.5, x2 = 1

= 1
3 , 1.5 ≤ x1 ≤ 2.5, x2 = 2

= 1
3 , 2.5 ≤ x1 ≤ 3.5, x2 = 3

(5)

H(X1, X2) = log2 3 = HX1 = HX2 (6)

p(x2|x1) = 1 (7)

H(X2|X1) =
∫

X1

p(x1)H(X2|x1 = X1)dx1

=
∫

X1

p(x1)
∫

X2

p(x2|x1) − log2 p(x2|x1)dx2dx1
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=
∫

X1

∫
X2

p(x1, x2) log2
1

p(x2|x1)
dx2dx1

= 0

X2 is deterministic by X1, so the information is 0 at the time.

H(X1|X2) = H(X1, X2) − HX2 = 0

(c)

fY1,Y2(y) =



= 2
3 , 0.5 ≤ y1 ≤ 1.5, 0.75 ≤ y2 ≤ 1.25

= 2
3 , 1.5 ≤ y1 ≤ 2.5, 1.75 ≤ y2 ≤ 2.25

= 2
3 , 2.5 ≤ y1 ≤ 3.5, 2.75 ≤ y2 ≤ 3.25

(8)

H(Y1, Y2) =
∫

Y1,Y2

2
3 − log2

2
3dy1dy2

= log2
3
2

H(Y2|Y1) = H(Y1, Y2) − H(Y1) = log2
1
2 = −1

H(Y1|Y2) = H(Y1, Y2) − H(Y2) = 0

(d)

I(X1; X2) = H(X1) − H(X1|X2) = log2 3

I(Y1; Y2) = H(Y1) − H(Y1|Y2) = log2 3

□
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Solution for Problem 2

(a) Assume µ is the uniform distribution from a finite discrete set of size N

DKL(f(x)||µ) =
N∑

f(xi) log f(xi)
µ(xi)

= −Hf(x) + logN ≥ 0
⇒ Hf(x) ≤ log N

The maximum entropy distribution of f(x) is the uniform distribution, log N is
the maximum entropy.

(b) The constraint of the question is:
∞∑

n=0
np(n) = α

Because D(p||q) ≥ 0,that

D(p||q) =
∑

p(x) log p(x)
q(x) ≥ 0

We can obtain the Gibbs equation:
−

∑
p(x) log p(x) ≤ −

∑
p(x) log q(x)

Such that we assume qi(x) = Aβi

−
∑

p(x) log p(x) ≤ −
∑

p(x) log Aβi

⇒ −
∑

p(i) log p(i) ≤ −
∑

p(i) log Aβi

−
∑

p(i) log p(i) ≤ −
∑

p(i) log A −
∑

p(i) · i log β

−
∑

p(i) log p(i) ≤ − log A − a log β

And because ∑
q(i) = 1

that
A

∑
βi = 1

A
1

1 − β
= 1

β = 1 − A equaion b.1

And the constraint of expected value:∑
iAβi = α = A

β

(1 − β)2

β = α

α + 1 combine equation b.1

A = 1
α + 1

Such that the maximum entropy distribution is p(n) = 1
α+1( α

α+1)n, and the
maximum entropy is (α + 1) log(α + 1) − α log α
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(c) Assume there are N finite intervals such that the PDF f(x), and µ(x) = 1
L

as
the uniform distribution on the above intervals:

f(x) = fi(x) , ai ≤ x ≤ bi

N∑
i=1

l[ai, bi] = L

Hf(x) = −
N∑

i=1

bi∫
ai

fi(x) log fi(x)dx

D(Hf(x)||µ(x)) = −Hf(x) + log L ≥ 0

such that uniform distribution is the maximum entropy distribution, and the
maximum entropy is log L

(d) Assume f(x) as the distribution of X given in the question. The constraint of
the question is: ∫

R+

xf(x) = α

Given Gibbs equality’s continuous format,

−
∫

f(x) log f(x)dx ≤ −
∫

f(x) log g(x)dx

Such that we assume g(x) = Aβx(β < 1)

−
∫

f(x) log f(x)dx ≤ −
∫

f(x) log Aβxdx

−
∫

f(x) log f(x)dx ≤ − log A −
∫

f(x)x log βdx

−
∫

f(x) log f(x)dx ≤ − log A − α log β

And the sum of probability is 1 that:∫
R+

g(x) = 1
∫

R+

Aβxdx = 1

A( 1
ln β

βx)|+∞
0 = 1

A(− 1
ln β

) = 1

A = − ln β

And the constraint that the expected value is α∫
R+

xg(x)dx = α
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A( 1
ln β

x · βx − 1
ln β

2
· βx)|+∞

0 = α

β = e− 1
α

A = 1
α

Such that
f(x) = 1

α
e− x

α

is the maximum entropy distribution, and the maximum entropy is:log α + 1

(e) According to the question, we assume q(x) = N (0, K) as a normal distribution
for multi-variable X that:

q(x1, x2...) = 1
(2π)n

2 (detK) 1
2
e− 1

2 xT K−1x (9)

Given Gibbs distribution,

0 ≤ −h(p(x)) −
∫

Rn

p(x) log q(x)dx (10)

that ∫
p(x) log q(x) =

∫
p(x) log( 1

(2π)n
2 (detK−1) 1

2
· e− 1

2 xT Kx)

= −1
2 log((2π)n(detK)) ·

∫
p(x) +

∫
p(x) log(e)(−1

2xT K−1x)

= −1
2 log((2π)n(detK)) + (−1

2 log eE(xT K−1x)

= −1
2 log((2π)n(detK)) − 1

2 log e

= −1
2 log((2π)n(detK)e)

= h(q(x))

Such that, combine equation (e).(10)

h(p(x)) ≤ h(q(x))

Then q(x) = N (0, K) is the maximum entropy distribution. And the maximum
entropy is:−1

2 log((2π)n(detK)e)

□

6



Solution for Problem 3

(a) The transition matrix is:

T =
[
1 − α α

β 1 − β

]
And the stationary condition matrix π fulfill:

πT =
[
π1 π2

] [
1 − α α

β 1 − β

]
=

[
π1 π2

]
= π

Such that

(1 − α)π1 + βπ2 = π1

απ1 + (1 − β)π2 = π2

Then

π =
[

β
α+β

α
α+β

]
is the stationary distribution of the source

(b) The entropy H(Xn) is:

H(Xn) = β

α + β
log α + β

β
+ α

α + β
log α + β

α

The entropy rate of the stationary stochastic process is:

H ′(X) = lim
n→∞

H(Xn|X1...Xn−1) = H(Xn|Xn−1) = H(X2|X1)

= β

α + β
H(α) + α

α + β
H(β)

= β

α + β
(α log 1

α
+ (1 − α) log 1

(1 − α)) + α

α + β
(β log 1

β
+ (1 − β) log 1

(1 − β))

The Matlab function for f(a,b) is:
1 function [ entropy ] = ent ropy f ( a , b )
2 entropy=(b . / ( a+b) ) ∗( a∗ log2 ( 1 . / a )+(1−a ) ∗ log2 (1./(1 − a ) ) )+(a

. / ( a+b) ) ∗(b∗ log2 ( 1 . / b)+(1−b) ∗ log2 (1./(1 −b) ) )
3 %entropy=(b./(a+b))*a*log2(1./(a))
4 end

The Matlab 2D plot script for f(α, β) is:
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Abbildung 1: 2D plot for entropy rate f(a,b)
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(c) Matlab function to generate the Markov-1 character string
1 function [ chain ]= markov generate ( cha in l eng th )
2 P=[0.8 0 . 2 ; 0 . 2 0 . 8 ] ;
3 %chainlength;
4 chain = zeros (1 , cha in l eng th ) ;
5 i n i t i a l v a l u e =1;
6 beta =0.2;
7 alpha =0.2;
8 chain (1 )=i n i t i a l v a l u e ;
9 for i =2: cha in l eng th

10 measure=rand ( ) ;
11 i f chain ( i −1)==1
12 i f measure<1−beta
13 chain ( i ) =1;
14 else
15 chain ( i ) =0;
16 end
17 e l s e i f chain ( i −1)==0
18 i f measure<alpha
19 chain ( i )=1
20 else
21 chain ( i )=0
22 end
23 end
24

25 end

One Markov-generated sample of length 1000 is:
1

2 Markov chain = [1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 . . .

3 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1
1 0 0 0 1 1 1 . . .

4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 . . .

5 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 0 0 0 . . .

6 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 . . .

7 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 . . .

8 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1
1 1 1 1 1 0 0 . . .

9 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 . . .
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10 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 . . .

11 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 . . .

12 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1
1 1 1 1 1 1 0 . . .

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 . . .

14 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 . . .

15 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 . . .

16 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 1 . . .

17 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 . . .

18 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 . . .

19 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 . . .

20 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 0 0 . . .

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 . . .

22 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 . . .

23 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 . . .

24 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 . . .

25 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 . . .

26 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 . . .

27 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 . . .

28 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 . . .

29 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 . . .

30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 . . .

31 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1
1 1 0 0 0 0 0 . . .

32 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 . . .
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33 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 . . .

34 0 1 1 0 0 0 0 1 ] ;

We want to estimate the entropy rate by:

H(X ) = lim
n→∞

H(X1, X2, X3..., Xn)
n∑

n=0

∑
i=nm

H(Xi+1,Xi+2,...,Xi+m)
m

n
≍ H(X )

n is the number of partitions in the N-length Markov chain sequence data diverse
by m-length group. I want to follow the steps to generate the entropy rate:

a) Generate a random sequence generated by the Markov process
b) Partition the sequence into overlapping segments of length m
c) Count the segments distribution statistically and estimate the probability
d) Calculate the entropy rate based on the estimated probability for

(X1, ..., Xm)
The Matlab function to calculate the entropy rate with N symbols and m length
is as follows:

1 function H = entropy rate markov 1 (X, m)
2 % X is the data generated by the Markov chain
3 n = length (X) ;
4 X grouped = reshape (X, m, [ ] ) ;
5 %Hgrouped = zeros(1, size(Xgrouped, 2));
6 H for =0;
7 i =1;
8 number=s ize ( X grouped , 2 )
9 f o r l e n g t h=s ize ( X grouped , 2 ) ;

10 while i<f o r l e n g t h
11 counts=1
12 j=i+1
13 while j<f o r l e n g t h
14 i f ( X grouped ( : , i )==X grouped ( : , j ) )
15 counts=counts+1
16 X grouped ( : , j ) =[ ]
17 f o r l e n g t h=s ize ( X grouped , 2 ) ;
18 else
19 j=j+1
20 end
21

22 p = counts / number
23 end
24 i=i +1;
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25 H for = H for+(−p ∗ log2 (p) )
26 end
27 H=H for /m
28 end

The analytically calculated entropy rate is around 0.7219.
When m=10, N=100000, the estimated entropy rate by the Matlab function
entropy rate Markov-1(X,m) is 0.71561. As the N increases the results are
more approaching to the analytical one. And increasing m under the condition
that 2m is much smaller than N, will also improve the accuracy a

(d) Assume the initial state ( β
α+β

, α
α+β

) to prove and modify the stationary state
that:

P (Yn = 0) = P (Xn = 0) = β

α + β
(11)

P (Yn = k + 1) (12)
= P (Xn = 1|Xn−1 = 1, ....Xn−k = 1, Xn−k−1 = 0) · P (Xn−1 = 1, ...., Xn−k = 1, Xn−k−1 = 0)

(13)
= (1 − β)P (Xn−1 = 1, Xn−k = 1, ..., Xn−k−1 = 0) (14)
= (1 − β)P (Xn−1 = 1, ..., Xn−k = 1|Xn−k−1 = 0) · P (Xn−k−1 = 0) (15)

= (1 − β)α(1 − β)k−1 · β

α + β
(16)

= α(1 − β)k β

α + β
(17)

Such that the entropy rate for Y

H ′(Y ) = lim
n→∞

H(Yn|Yn−1) = H(Y2|Y1)

= β

α + β
H(α) + α

α + β
H(β)

= β

α + β
(α log 1

α
+ (1 − α) log 1

(1 − α)) + α

α + β
(β log 1

β
+ (1 − β) log 1

(1 − β))

□
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Information Theory and Source Coding

3. Assignment
Lecture Professor: Markus Fierl

TA:Shudi Weng

Jin, Xin

11. August 2023

Solution for Problem 1

(a) Apply the Kraft inequality, the lower bound for prefix-free code should be:

D−1 + D−1 + D−2 + D−2 + D−3 + D−3 ≤ 1

That the lower bound for D ≈ 2.53 ≈ 3.(D should be integer) If we would like
to design a uniquely decodable code(a prefix-free code should be a decodable
code), and the be decreased on theory, and we found that D=2 can not estimate
a uniquely decodable code. So the bound should be still D=3 for a uniquely
decodable code.

(b) Arrange the symbols of their probabilities:{a, b, c, d} = {1
3 , 1

3 , 1
4 , 1

12}. The possi-
ble 2-ary Huffman codes for the random message:

{a, b, c, d} = {0, 10, 110, 111}
= {0, 10, 111, 110}
= {0, 11, 100, 101}
= {0, 11, 101, 100}
= {1, 00, 010, 011}
= {1, 00, 011, 010}
= {1, 01, 001, 000}
= {1, 01, 000, 001}

The average code length is:

E(L) = 1
3 + 2

3 + 3
4 + 3

12 = 2

H(X) = 1
3 log2(3) + 1

3 log2 3 + 1
4 log2(4) + 1

12 log2(12) ≈ 1.86

Such that E(L) > (X), there are optimal codes with codeword lengths for some
symbols that exceed the Shannon code length.
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(c) Arrange symbols {a, b, c, d, e} = {0.3, 0.3, 0.2, 0.1, 0.1} for the message. The bi-
nary Huffman code could be:

{a, b, c, d, e} = {00, 01, 10, 110, 111}

The average length is:

E(L) = 0.3 ∗ 2 + 0.3 ∗ 2 + 0.2 ∗ 2 + 0.1 ∗ 3 + 0.1 ∗ 3 = 2.2

For H(X)=E(L), I assume the probabilities{a, b, c, d, e} = {1
2 , 1

4 , 1
8 , 1

16 , 1
16} The

one 2-ry Huffman code could be:

{a, b, c, d, e} = {0, 10, 110, 1110, 1111}

Then,

E(L) = 1
2 + 2

4 + 3
8 + 4

16 + 4
16 = 15

8
H(X) = 1

2 log2 2 + 1
4 log2 4 + 1

8 log2 8 + 1
16 log2 16 + 1

16 log2 16 = 15
8

E(L) = H(X)

(d) l1 = (1, 2, 2) can be word lengths of a binary Huffman code
l2 = (2, 2, 3, 3) can not be word lengths of a binary Huffman code.
l3 = (1, 2, 2, 2, 2) can not be word lengths of a ternary Huffman code.
l4 = (2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3) can be word lengths of a ternary Huffman code.

□

Solution for Problem 2

(a) The following code is the Matlab function replacing a strings of 0s and 1s by
run-length values. And the start value of 0 or 1 is indicated, binary2runlength.m.

1 function [ r l v a l u e s , s t a r t v a l u e ] = binary2run length (
stream )

2 %binary2runLength encodes a string of 0s and 1s using run-length encoding
3 %Inputs:
4 %stream: a string of 0s and 1s
5 r l v a l u e s =[ ]
6 s t a r t v a l u e=stream (1)
7 n=length ( stream )
8 count=1
9

10 for i =2:n
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11 i f ( stream ( i )==stream ( i −1) )
12 count=count+1
13 else
14 r l v a l u e s =[ r l v a l u e s , count ]
15 count =1;
16 end
17

18 end
19 r l v a l u e s =[ r l v a l u e s , count ]
20 end

(b) The source coding theorem shows that the optimal code for a random variable
X has an expected length less than:

H(X) + 1

Such that we apply H(X) to estimate the optimal bits for encoding run-length
into binary code, and generate the optimal length for the binary stream. And
write Matlab function, optimalstream.m:

1 function [ op t ima l l eng th ] = optimalstream (
run length code ,m)

2 %OPTIMALSTREAM Summary of this function goes here
3 % Detailed explanation goes here
4 %m is the consecutive group number
5 %runcodelengthisthelengthofrunlengthcode
6 %optimallengthistheoptimallengthforrunlengthcode′sbinarycode
7

8 run code l ength=length ( run l ength code )
9 [ l ength p ,H]= entropy rate markov ( run length code ,m)

10 opt ima l l eng th=c e i l ( l ength p )+H∗ run code l ength
11

12 end

The entropy rate is constructed as, entropy-rate-markov.m:
1 function [ l ength p , H] = entropy rate markov (X, m)
2 n = length (X) ;
3 remain=mod( length (X) ,m)
4 X( length (X) −(0: remain −1) ) =[ ]
5

6 X grouped = reshape (X, m, [ ] ) ;
7 %Hgrouped = zeros(1, size(Xgrouped, 2));
8 H for =0;
9 i =1;

10 l ength p=0
11 number=s ize ( X grouped , 2 )

3



12 f o r l e n g t h=s ize ( X grouped , 2 ) ;
13 sum p=0
14 while i<f o r l e n g t h
15 counts=1
16 j=i+1
17 while j<f o r l e n g t h
18 i f ( X grouped ( : , i )==X grouped ( : , j ) )
19 counts=counts+1
20 X grouped ( : , j ) =[ ]
21 f o r l e n g t h=s ize ( X grouped , 2 ) ;
22 else
23 j=j+1
24 end
25

26 p = counts / number
27 end
28 sum p=sum p+p
29 i=i +1;
30 l ength p=length p −log2 (p)
31 H for = H for+(−p ∗ log2 (p) )
32 end
33 H=H for /m
34 end

(c) Generate the run-length code by a=0.05:0.05:0.95, and apply the optimum bi-
nary encoding length from the previous question, and plot the corresponding
compression ratio versus a, The Matlab code is as follows, compression.m:

1 %singlecodelengthisthelengthofeachstream′srunlengthcode
2 %bitsnumberisthenumberofsourcestreambits
3 bits number =19600
4 a = 0 . 0 5 : 0 . 0 5 : 0 . 9 5
5 source s t r eam =[ ]
6 l eng th a=length ( a )
7 code l ength =[ ]
8 s t a r t v a l u e=0
9 m=10

10 for i =1: l eng th a
11 source s t ream=markov generate ( a ( i ) , bits number )
12 run l ength code=binary2run length ( source s t r eam )
13 s i n g l e c o d e l e n g t h=optimalstream ( run length code ,m)
14 code l ength =[ code length , s i n g l e c o d e l e n g t h ]
15

16 end
17 compre s i on ra t i o =19600./ code l ength
18 plot ( a , compre s i on ra t i o )
19

4



20 t i t l e ( ’Compression ratio related to a’ )
21 xlabel ( ’a’ )
22 ylabel ( ’Compression ratio’ )

And the run-length binary code compression versus a plot image is as follows:

Abbildung 1: Run-length optimum binary Compression ratio versus a

From the image, we can find that the compression ratio achieves the lowest
when a ≈ 0.5. More the a is closer to 0 or 1, the higher is the compression
rate. The absolute value of decreasing speed around a=0.1 is higher than the
increasing speed’s around a =0.95. The derivative is always positive, and the
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compression ratio versus a is convex. There exists errors in the computation due
to the limitation of my laptop’s compute ability.
And the Matlab code for generating pmf for a=0.05,0.5,0.95 is as follows, pmf.m:

1 %pmf.m for HW3 2(c) to draw figure
2 bits number =19600
3 a=0.95 %a=0.05,0.5,0.95
4 source s t r eam =[ ]
5 l eng th a=length ( a )
6

7 source s t r eam=markov generate ( a , bits number )
8 run l ength code=binary2run length ( source s t ream )
9

10

11 h i s tOb j ec t = histogram ( run length code , ’Normalization’ , ’
pdf’ )

12 grid on ;
13 xlabel ( ’Run-length code numbers generated by a=0.95’ ) ;
14 ylabel ( ’PDF’ )

The pmf of run-length values for a=0.05 is plot as Abbildung 2:

Abbildung 2: Run length PMF distribution versus a=0.05

I can observe that, for a=0.05, there are significantly more repetitions. And for
a=0.5, the repetitions are less, the repetitions of a=0.95 is the least. For a=0.05,
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The pmf of run-length values for a=0.5 is plot as Abbildung 3:

Abbildung 3: Run length PMF distribution versus a=0.5

the width of each histogram is narrowest, and there more types of run-length co-
de’s values in comparison with a=0.5 and a=0.95. And for all of a=0.05,0.5,0.95,
the pmf is decreasing versus the increasing values of run-length code.
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The pmf of run-length values for a=0.95 is plot as Abbildung 4:

Abbildung 4: Run length PMF distribution versus a=0.95

□

Solution for Problem 3

(a) intout = bitshift(A,k) returns A shifted to the left by k bits, which is equi-
valent to multiplying by 2k and rounding to the nearest integer toward negative
infinity. Any overflow bits will be truncated. emit bit(0) is the operation to
append bit 0 at the end of the stream We set the initial probability state as
p0=(0.5,0.5), and α = β because for stationary process:

p0 = ( β

α + β
,

β

α + β
) = (0.5, 0.5)

The Matlab function for arithmetic encode with a=b for Markov-1 chain is
arithmetic.m:

1 function [ outputStream]= a r i t h m e t i c c o r r e c t ( a , x )
2 % Input: sequence of binary symbols x
3 % Input: transition probability a
4 % Output: binary arithmetic code for x
5

8



6 % Initialize variables
7 %x=[1,1,1,1,0,1,1,1,1,0];N = 22; P = 8; C = 0; A =

2N ; r = −1; b = 0; outputStream = []p0 = [a/(a + a), a/(a + a)]p0 = p0(1)
8 p0=2ˆP∗p0%current probabilities
9

10 %trasitionmatrix = [1 − a, a; a, 1 − a];
11 %Encode the sequence
12 for n=1: length ( x )
13 %Update the interval low end and interval length
14 T=A∗p0 ;
15 i f x (n)==1
16 C =C+T
17 T=b i t s h i f t (A,P)−T%T = 2P ∗ A − Tend
18 %Check if the interval needs renormalization
19 i f (C>=2ˆ(N+P) )
20 C = mod(C, 2ˆ(N+P) )
21 % propagate carry
22 outputStream=[outputStream 1 ]%emit-bit(1)
23 i f r>0
24 for i =1: r−1
25 outputStream=[outputStream 0 ]
26 end
27 r=0
28 else
29 r=−1
30 end
31 end
32

33 while T<2ˆ(N+P−1)
34 %renormalize once
35 b = b+1;
36 T = 2∗T;
37 C = 2∗C;
38 i f C>=2ˆ(N+P)
39 C = b i t s h i f t (C, −N−P)%C = bitand(C,

2(N + P ) − 1)ifr < 0
40 outputStream=[outputStream 1 ]
41 else
42 r = r +1;
43 end
44 else
45 %no overflow of C
46 i f r>=0
47 outputStream=[outputStream 0 ]
48 for i =1: r
49 outputStream=[outputStream 1 ]

9



50 end
51 end
52 r=0
53 end
54 end
55 A = f loor (T/2ˆP) ;
56 %transition matrix probability update
57 %if(x(n)==0)
58 % p = [1-a,a;]
59 %else
60 % p = [a,1-a;]
61 %end
62 end
63 i f r>=0
64 outputStream=[outputStream 0 ] ;
65 for i =1: r
66 outputStream=[outputStream 1 ] ;
67 end
68 end
69

70 %for i = 1:N+P
71 % outputStream = [outputStream bitget(C, N+P-i+1)];
72 %end

(b) Compare the entropy of Markov-1 source stream and arithmetic code’s entropy.
Due to the computation limitation of my laptop, I set N=10000 for experiment.
The Matlab code for drawing the comparison of entropy of Markov-1 and arith-
metic code is draw-question-b.m:

1 N = 10000; % length of the Markov-1 stream
2 P = 10 ; % precision parameter
3 alpha = 0 . 1 : 0 . 0 5 : 0 . 9 ; % values of alpha to use
4

5 markov entrop ies = zeros ( s ize ( alpha ) ) ;
6 c ode en t r op i e s = zeros ( s ize ( alpha ) ) ;
7

8 for i = 1 : length ( alpha )
9 % generate the Markov-1 stream

10 markov stream = markov generate ( alpha ( i ) , N) ;
11

12 % encode the stream using the binary arithmetic encoding algorithm
13 code stream= a r i t h m e t i c c o r r e c t ( alpha ( i ) ,

markov stream ) ;
14

15 % compute the entropies
16 markov entrop ies ( i ) = entropy ( markov stream ) ;

10



17 c ode en t r op i e s ( i ) = entropy ( code stream ) ;
18 end
19

20 % plot the estimated entropies
21 plot ( alpha , markov entropies , ’r-’ , alpha , code en t rop i e s

, ’b-’ ) ;
22 %plot(alpha, codeentropies,′ b−′);
23

24 xlabel ( ’’ ) ;
25 ylabel ( ’Estimated Entropy’ ) ;
26 legend ( ’Markov -1’ , ’Arithmetic Encoded Stream’ ) ;

Abbildung 5: Entropy comparison of Markov-1 and arithmetic encode versus a

From the Figure 5. we can find that, the entropy value of Markov-1 source stream,
and arithmetic stream are both equal and smaller than 1. The entropy of Markov-1
source stream is constant to 1. And the entropy of arithmetic enocoded stream is
increasing when the α is increasing, and range from arond 0.84 to 1.
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(c) Compare the entropy rate of Markov-1 source stream and arithmetic code’s
entropy rate.
The Matlab code for drawing the entropy rate for Markov-1 and arithmetic code:

1 source s t ream = [ ] ;% the source stream gernated by Markov-1
2 a r i thmet i c code = [ ] ;% the arithmetic code generated by binary source

stream
3 N=19600;% the number of elements in the markov generated sequence
4 m=10;
5 a r i t h m e t i c c o d e e n t r o p y r a t e=zeros ( s ize ( a ) ) ;% the entrpy rate

of arithmetic code
6 s o u r c e en t r op y r a t e=zeros ( s ize ( a ) ) ;% the entropy rate of source

stream
7 a = 0 . 1 : 0 . 0 5 : 0 . 9 ;
8 for i =1: length ( a )
9 source s t ream=markov generate ( a ( i ) ,N) ;

10 a r i thmet i c code=ar i thmet i c ( a ( i ) , source s t r eam ) ;
11 s o u r c e en t r op y r a t e ( i )=entropy rate markov (

source stream ,m) ;
12 a r i t h m e t i c c o d e e n t r o p y r a t e ( i )=entropy rate markov (

ar i thmet i c code ,m) ;
13

14 end
15

16 % plot the estimated entropies
17 plot ( a , s ou r c e en t ropy ra t e , ’r-’ , a ,

a r i t hmet i c c ode en t r opy ra t e , ’b-’ ) ;
18 xlabel ( ’’ ) ;
19 ylabel ( ’Estimated Entropy Rate’ ) ;
20 legend ( ’source stream’ , ’arithmetic’ ) ;

From Figure 6., we can find that: the arithmetic entropy rate is less than Markov-
1 source stream. And their values is less than 1, and over than around 0.4. They
have similar inverse-U shape, that increase firstly when α increase from 0 to around
α = 0.5, then decrease when α increase from 0.5 to 1.

12



N=19600

Abbildung 6: Entropy rate comparison of Markov-1 and arithmetic encode versus a

(d) 1. The compression ratio of arithmetic code.
2. Compare the arithmetic code compression ratio to the runlength code enco-
ding with Golomb code’s compression ratio.
The Matlab code for drawing compression rate for Markov-1 and arithmetic
code, draw-comression.m:

1 % Draw the compression ratio of arithmetic and Golomb
2

3 a = 0 . 1 : 0 . 0 5 : 0 . 9
4 N=2000% the number of markov numbers
5 run l ength code =[ ]%the run-length code
6 golomb code =[ ]%the golomb code generate by run-length code
7 a r i thmet i c code =[ ]% the arithmetic code
8 source s t r eam =[ ]% the markov-1 source data
9 go lomb length code l ength =[ ]%the run-length code length versus a

10 a r i t h m e t i c c o d e l e n g t h =[ ]% the arithmetic code length versus a
11

12 golomb compress ion = [ ] ;% the compression rate of golomb
13 ar i thmet i c compre s s i on =[ ]% the compression rate of arithmetic
14

15 for i =1: length ( a )
16 source s t ream=markov generate ( a ( i ) ,N) ;
17 a r i thmet i c code=a r i t h m e t i c c o r r e c t ( a ( i ) , source s t r eam

)
18 run l ength code=binary2run length ( source s t r eam )
19 golomb code=golomb encoding ( run length code , 5 , 4 )
20 a r i t h m e t i c c o d e l e n g t h =[ a r i t h m e t i c c o d e l e n g t h length

( a r i thmet i c code ) ]
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21 go lomb length code l ength =[ go lomb length code l ength
length ( golomb code ) ]

22 end
23 ar i thmet i c compre s s i on=N./ a r i t h m e t i c c o d e l e n g t h ;
24 golomb compress ion=N./ go lomb length code l ength ;
25

26

27 plot ( a , a r i thmet i c compres s ion , ’r-’ , a ,
golomb compression , ’b-’ ) ;

28 xlabel ( ’’ ) ;
29 ylabel ( ’compression ratio’ ) ;
30 legend ( ’arithmetic code compression rate’ , ’golomb code

compression rate’ ) ;

N=19600

Abbildung 7: Compression ratio comparison of Golomb and arithmetic encode ver-
sus a

From the Figure 7. we can find that the golomb’s compression rate is decreasing
when the probability α increase. And the arithmetic’s compression is costant
to 1. They intersect when α is around 0.37. We can conclude that in which
area estimation of α, which encoder would work better at the compression rate
aspect.

□

Solution for Problem 4

(a) Follow is the Matlab function of Golomb encode, golomb-encoding.m:
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1 function code = golomb encoding ( r , A, Nmax)
2 % Initialize
3 N = 1 ;
4 s i n g l e c o d e = [ ] ;
5 code =[ ]
6 i = 1 ;
7 f i n a l c o d e = [ ] ;
8 % FOR each run-length value r DO
9 for run = r

10 % estimate parameter k = max0, ceil(log2(A/(2*N)))
11 k = max(0 , c e i l ( log2 (A/(2∗N) ) ) ) ;
12

13 % code r using Golomb code with parameter k
14 q = f loor ( run / 2ˆk ) ;
15 r k = run − q ∗ 2ˆk ;
16 unary = repmat ( ’0’ , 1 , q ) ;
17 i f q > 0
18 unary (end) = ’1’
19 end
20 s i n g l e c o d e = [ unary dec2bin ( r k , k ) ] ;
21 code=[ code s i n g l e c o d e ]
22 i = i + 1 ;
23

24 % IF N = Nmax
25 i f N == Nmax
26 % A = floor(A/2)
27 A = f loor (A/2) ;
28 % N = floor(N/2)
29 N = f loor (N/2) ;
30 end
31

32 % A = A + current run-length value
33 A = A + run ;
34 % N = N + 1
35 N = N + 1 ;
36 end
37

38 end

(b) The Matlab code to draw the compression comparison, draw-compression-q4.m:
1 % Draw the compression ratio of arithmetic and Golomb
2

3 a = 0 . 0 5 : 0 . 0 5 : 0 . 9 5
4 N=5000% the number of markov numbers
5 m=10
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6 run l ength code =[ ]%the run-length code
7 golomb code =[ ]%the golomb code generate by run-length code
8 run l ength code =[ ]% the run-length code
9 source s t r eam =[ ]% the markov-1 source data

10 go lomb length code l ength =[ ]%the golomb run-length code length
versus a

11 opt ima l code l eng th =[ ]% the run-length optimal code length versus a
12

13 golomb compress ion = [ ] ;% the compression rate of golomb
14 opt imal compress ion =[ ]% the compression rate of arithmetic
15

16 for i =1: length ( a )
17 source s t ream=markov generate ( a ( i ) ,N) ;
18 run l ength code=binary2run length ( source s t r eam )
19 golomb code=golomb encoding ( run length code −1 ,5 ,4)
20 opt ima l code l eng th =[ opt ima l code l eng th length (

optimalstream ( run length code ,m) ) ]
21 go lomb length code l ength =[ go lomb length code l ength

length ( golomb code ) ]
22 end
23 opt imal compress ion=N./ opt ima l code l eng th ;
24 golomb compress ion=N./ go lomb length code l ength ;
25

26

27 plot ( a , opt imal compress ion , ’r-’ , a , golomb compression ,
’b-’ ) ;

28 xlabel ( ’’ ) ;
29 ylabel ( ’compression ratio’ ) ;
30 legend ( ’run-length optimal code compression rate’ , ’

golomb code compression rate’ ) ;
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And the plot of compression rate of run-length optimal and golomb code is
presented:

N=5000

Abbildung 8: Compression ratio comparison of optimum run-length code and go-
lomb encode versus a

From the plot Figure 8. we can see that the compression rate of golomb and
run-length are both decreasing versu α. And the compression rate of run-length
is always higher than golomb.

• The value of Nmax is a design parameter that affects the trade-off between
the length of the encoded bitstream and the computational complexity of
the encoder and decoder. The larger the value of Nmax, the lower the pro-
bability of needing to renormalize during the encoding process, but the
longer the Golomb codes that are used to encode the run-length values.
Typically, a value of Nmax is chosen to be a power of 2, so that the divi-
sion and shift operations needed for renormalization can be implemented
efficiently using bit-wise operations. A common choice is to set Nmax to
be equal to the maximum representable value for an unsigned integer of
width W, divided by 2 (i.e., Nmax = 2W −1 − 1). This ensures that the
counter will never overflow during renormalization. The optimal value of
Nmax may depend on the specific input source and the desired trade-off
between compression ratio and encoding speed. Therefore, it may be ne-
cessary to experiment with different values of Nmax to find the optimal
value for a particular application.A may also result in longer code words,
which can reduce the compression ratio, so there is a trade-off between the
value of A and the resulting code length. For the given problem, we can
set A to a reasonable value based on the expected average run-length of
the Markov-1 source.

• For small values of alpha, the run-length encoder achieves a higher com-
pression ratio than the adaptive Golomb encoder. This is because the run-
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length encoder is designed to handle runs of 0’s and 1’s, which are likely
to occur in the Markov-1 source for small values of alpha.

• For large values of alpha, the adaptive Golomb encoder achieves a higher
compression ratio than the run-length encoder. This is because the adaptive
Golomb encoder is better suited to handle longer runs of arbitrary symbols,
which are likely to occur in the Markov-1 source for large values of alpha.

• The performance of the adaptive Golomb encoder improves as the value
of A is increased and the value of Nmax is decreased. A higher value of A
means that longer runs are expected, and a lower value of Nmax means that
the adaptive Golomb encoder will renormalize more frequently, allowing it
to better adapt to changes in the statistics of the input stream. However,
increasing

□
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Solution for Problem 1

(a) State the given mean absolute error criteria γ for the Shannon lower bound. D
is the given distortion limitation. Assume the random variable X, the estimated
X̂ for X during data transmission.
For the given mean absolute error, the distribution of X would fulfill:

γ = E(d(X, X̂)) = E(|X − X̂|) ≤ D

the Shannon lower bound would be:

h(X) − sup
E(|X−X̂|)≤D

h(X − X̂)

The first term in the Shannon lower bound is the entropy of source signal dis-
tribution, which is constant for a given source. The second term of the Shannon
lower bound is the superior value for the entropy of (X −X̂) under the condition
that absolute mean error lower than γ, which is determined by the estimation
method of X to X̂. The second sup-term is determined by the norm and limita-
tion of d.

(b) The Shannon lower bound for R(D) is:

R(D) ≥ h(X) − sup
d≤D

h(X − X̂)

which indicates that, we can estimate the Shannon lower bound by estimating
the maximum entropy of h(X − X̂) to decide the sup-term of Shannon lower
bound. The second sup-term is determined by the norm and limitation of d.

(c) Because the second sup-term of Shannon lower bound is only determined by the
norm and limitation of d, we want to estimate the maximum entropy for the
second sup-term firstly,
Given:

E(fV (v)|v|) = γ =
∫

fV (v)|v|dv (1)

1



And fV (v) is a density that: ∫
fV (v)dv = 1

We want to find the fV (v) that maximizes:

h(V ) = −
∫

fV (v) log2 fV (v)dv

We should also impose the constraint that fV (v) ≥ 0, but we will see the solution
satisfying this constraint. Given the Lagrange opimization method, and assume
symmetry and optimize the criterion

F =
∞∫

0

(−fV (v) log(fV (v)) + λfV (v)vdv)

where λ is the Lagrange multiplier. The optimization equation for derivative=0
will be:

− log(fV (v)) − 1 + λv = 0

Apply eq. (1), obtain the maximum entropy distribution:

fV (v) = 1
2γ

e− |v|
γ (2)

And the maximum entropy for the second sup-term would be:

Hsup = log2(2eγ) (3)

• Rectangular sample density is a type of probability distribution that repres-
ents an i.i.d. process where the samples are uniformly distributed within a
finite range. In other words, each sample has an equal probability of occur-
ring within the range, and there is zero probability of samples outside the
range. Assume pdf as an uniform distribution as p(x) = 1

A
.

The goal is to find the maximum entropy distribution W for h(W ) given
E(|W |) ≤ γ.

sup
W

h(W ), E(|W |) ≤ γ

1. Calculate the entropy of the source X:

h(X) = log2(A)

2. Calculate the Shannon lower bound for rectangular sample:

RSLB(γ) = h(X) − Hsup = log2 A − log2(2eγ)

= log2
A

2eγ

2



• Assume the Gaussian sample density N (µ, σ2):

f(x) = 1
σ

√
2π

e− (x−µ)2

2σ2

1. Calculate the entropy of X:

h(X) = 1
2 log2 2πeσ2

2. Calculate the Shannon lower bound for Gaussian sample:

RSLB(D) = h(X) − Hsup

= 1
2 log2 2πeσ2 − log2 2eγ

= log2

√
πσ√
2eγ

• Assume the Laplace sample density as:

f(x) = a

2e−a|x−µ|

1. Calculate the entropy of X:

h(X) = log2
2e

a

2. Calculate the Shannon lower bound for Laplace smaple:

RSLB(D) = h(X) − Hsup

= log2
2e

a
− log2 2eγ

= −log2(aγ)

(d) According to the Kleijn’s book, if rate-distortion function coincides with the
Shannon lower bound, then

h(X − X̂|X̂) = h(X − X̂)
I(X − X̂; X̂) = 0

From a theoretical aspect, when the Shannon lower bound is tight, in other
words, it definitely possible to create a variable with the statistics of X by
adding the independent variables X̂ and V(the maximum entropy distribution
given the distortion measure D), the rate-distortion would coincide with the
shannon lower bound. And given the Fourerir transform F given:

FfX̂(ω) = FfX(ω)/FfV (ω)

3



if the inverse Fourier transform of FfX̂(ω) is a density(nonnegative), then the
shannon lower bound is tight, and fulfill the question condition.
Consider the practical cases examples:
1. Gaussian source(squared error in the book): For a Gaussian source with a va-
riance σ2, the lower bound on the rate-distortion function given by the Shannon
lower bound coincides with the actual rate-distortion function.
2. Laplacian source(absolute error in the book): For a Laplacian source the
lower bound on the rate-distortion function given by the Shannon lower bound
coincides with the actual rate-distortion function.

□

Solution for Problem 2

(a) Given the definition of E(d(X, X̂))

E(d(X, X̂)) = P (X = X̂) · d(X = X̂) + P (X̂ =?) · d(X̂ =?)
+ P (X = 0, X̂ = 1; X = 1, X̂ = 0) · d(X = 0, X̂ = 1; X = 1, X̂ = 0)

Such that,
if P (X = 0, X̂ = 1; X = 1, X̂ = 0) ̸= 0

E(d(X, X̂)) = ∞

if P (X = 0, X̂ = 1; X = 1, X̂ = 0) = 0

E(d(X, X̂)) = P (X̂ =?)

(b) For the distortion rate function:

R(D) = inf
f(X|X̂)

I(X; X̂) s.t. E(d(X, X̂)) ≤ D (4)

R(D) = h(x) − sup h(X|X̂) s.t. E(d(X, X̂)) ≤ D (5)
that we can only consider the condition that P (X = 0, X̂ = 1; X = 1, X̂ =
0) = 0, otherwise E(d(X, X̂)) will be infinite and E(d(X, X̂)) ≤ D can never
be fulfilled. We want to find the maximum value for the second sup-term in
equation. (5)
Such that we can generate:

p(X = 0|X̂ = 0) = 1
p(X = 0|X̂ = 1) = 0

4



p(X = 1|X̂ = 1) = 1
p(X = 1|X̂ = 0) = 0

That the above four items would be zero for the entropy calculation in h(X|X̂),
and the value of h(X|X̂) would be determined by p(X = 0|X̂ =?) and p(X =
1|X̂ =?).
From the previous 2(a), we generate E(d(X, X̂)) = P (X̂ =?), such that
1. if 0 ≤ D ≤ 1, then 0 ≤ P (X̂ =?) ≤ D ≤ 1

P (X̂ =?) = p(X = 0|X̂ =?) + p(X = 1|X̂ =?)

And have equations and inequalities

h(X|X̂) = −p(X = 0, X̂ =?) log2 p(X = 0|X̂ =?) − p(X = 1, X̂ =?) log2 p(X = 1|X̂ =?)
(6)

p(X = 0|X̂ =?) + p(X = 1|X̂ =?) = 1 (7)
p(X = 0, X̂ =?) + p(X = 1, X̂ =?) ≤ D (8)

the h(X|X̂) would be maximied when

P (X̂ =?) = D

p(X = 0|X̂ =?) = p(X = 1|X̂ =?) = 1
2

p(X = 0, X̂ =?) = p(X = 1, X̂ =?) = 1
2 · P (X̂ =?) ≤ D

2

such that

sup
d≤D

h(X|X̂)

= sup[−p(X = 0, X̂ =?) log2 p(X = 0|X̂ =?) − p(X = 1, X̂ =?) log2 p(X = 1|X̂ =?)]

= −D

2 log2
1
2 − D

2 log2
1
2

= D

To conclude that:

R(D) = h(X) − sup
d≤D

h(X|X̂) = 1 − D

where h(X) is the entropy of Bernoulli(1
2)

2. if D > 1, then 0 ≤ P (X̂ =?) ≤ 1, h(X|X̂) would be maximized with:

P (X̂ =?) = 1

5



p(X = 0|X̂ =?) = p(X = 1|X̂ =?) = 1
2

p(X = 0, X̂ =?) = p(X = 1, X̂ =?) = 1
2 · P (X̂ =?) ≤ 1

2
Such that

sup
d≤D

= 1

Finally,
R(D) = h(X) − sup

d≤D
= 0

We get

R(D) =
{

= 1 − D, 0 ≤ D ≤ 1
= 0, D > 1

(9)

(c) A simple scheme to achieve any value of the rate distortion function for this
source is the following:
if the desired distortion 0 ≤ D ≤ 1
1. Encode the source with a fixed rate R0=1-D
2. Transmit the encoded message over the noisy channel.
3. At the receiver, decode the message using the same fixed rate R0.
4. Apply a distortion measure to the decoded message to obtain the output Y.
5. Considering the transmission loss and decoder loss, the theoretical D can
always not be achieved. If the real-distortion d is greater than the desired dis-
tortion level D, discard the decoded message and repeat the encoding and trans-
mission process with a higer rate R1, where R1 is greater than or equal to R0.
Continue increasing the rate until the desired distortion level D is achieved.
6. If the distortion D(Y,X) is less than or equal to the desired distortion level
D, output Y as the final result.
if the desired distortion D > 1, then we could set the beginning R0 at a least
rate according to the conclusion of 2(b), and repeating the steps 2.3.4.5.6.
This scheme can achieve any value of the rate distortion function R(D) because
it is based on an iterative process of encoding and transmission with increasing
rates until the desired distortion level is achieved. By adjusting the rate R0 and
the increasing sequence of rates R1, R2, R3, ..., we can achieve any point on
the rate distortion curve. The scheme also guarantees that the output distortion
will be less than or equal to the desired distortion level, since we discard any
decoded message that does not meet the desired distortion level.
This scheme is a simple example of a variable rate coding scheme, where the
encoder and decoder use different rates for different parts of the source sequence
depending on the distortion level. This is in contrast to a fixed rate coding
scheme, where the encoder and decoder use a fixed rate for the entire source
sequence. Variable rate coding schemes are commonly used in practical coding
schemes to achieve better performance.
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□
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Solution for Problem 1

According to the question, the absolute difference distortion measure is applied, for
mean distortion Di of each cell and denote

∫
Vi

dx as the integral over the cell:

Di =
∫

Vi
fX(x)d(x, Q(x))dx∫

Vi
fX(x)dx

=
∫

Vi
fX(x)|x − ci|dx∫

Vi
fX(x)dx

≈
∫

Vi
fX(ci)|x − ci|dx

fX(ci) · ∆i

=

∫ ci

− ∆i
2

(ci − x)dx +
∫ ∆i

2
ci

(x − ci)dx

∆i

= 1
4∆i

where ∆i is the step size of the quantizer and we assumed the centroid is located
at any point of the cell[−∆i

2 , ∆i

2 ] so as to minimize the distortion.
The step size ∆i of a scalar quantizer is inversely proportional to the local density
of the centroids(quantizer reconstruction points) per unit length, denoted as gC(x):

gC(ci) = 1
∆i

Denote pI(i) as the index probability we have:

D =
∑
i∈I

pI(i)Di (1)

≈ 1
4

∑
i∈I

pI(i)∆i (2)

= 1
4

∑
i∈I

pI(i) 1
gC(ci)

(3)

1



= 1
4

∑
i∈I

∫
Vi

fX(x) 1
gC(ci)

dx (4)

= 1
4

∑
i∈I

∫
Vi

fX(x) 1
gC(x)dx (5)

≈ 1
4

∫
R

fX(x) 1
gC(x)dx (6)

(a) For resolution-constrained scalar quantization:∫
R

gC(x)dx = N (7)

Using the Lagrange multiplier we can obtain modified criterion as:

µ = 1
4(

∫
R

(fX(x) 1
gC(x) + λgC(x))dx − λN)

where λ is the Lagrange multiplier. The Euler-Lagrange equation is:

−fX(x) 1
gC(x)2 + λ = 0 (8)

Combine equations (7) and (8), we can find the solution:

gC(x) = N · fX(x) 1
2∫

R fX(x) 1
2 dx

(9)

Combine equations (6) and (9) we obtain:

D = 1
4N

(
∫

R
fX(x) 1

2 dx)2 (10)

Using the fact that the rate is R = log(N), we obtain the relationship between
rate and distortion:

R = − log 4D + 2 log(
∫

R
fX(x) 1

2 dx)

Consider fX(x) = a
2e−a|x| is Laplace density, that:

R(D) = − log 4D + 2 log 2
√

2√
a

R(D) = − log 4D + log 4
a

R(D) = − log aD

The plot of rate and distortion for high rate constrained-resolution for Laplace
density(a=1) is as follows:
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Abbildung 1: The relationship between Rate and Distortion, for Laplace density a=1

(b) In practice, the first-order entropy of the indices is generally used as the measure
of rate:

H(I) = −
∑
i∈I

pI(i) log(pI(i))

We first determine the index entropy in terms of the differential entropy of the
data and centroid density gC(x):

H(I) = −
∑
i∈I

pI(i) log pI(i) (11)

≈ −
∑
i∈I

fX(ci)∆i log(fX(ci)∆i) (12)

≈ −
∫
R

fX(x) log fX(x)
gC(x) dx (13)

= h(X) + E[log(gC(X))] (14)

To minimize the distortion:

D =
∫

R
fX(x)d(x, Q(x))dx

The distortion is(equation (6)):

D = 1
4

∫
R

fX(x) 1
gC(x)dx (15)

And apply the constraint(equation. (14)). Because h(X) is constant during the
optimization, the constraint can be simplified to:

b = E[log(gC(X))] =
∫

R
fX(x) log(gC(x))dx

3



where b is a constant, and apply the Lagrange-multiplier, obtain the criterion:

µ = 1
4(

∫
R

(fX(x) 1
gC(x) + λfX(x) log(gC(x)))dx − λb)

get the Euler-Lagrange equation:

− 1
gC(x)2 + λ

1
gC(x) = 0

which is solved by
gC(x) = constant

So entropy-constrained optimization under high rate scalar quantizer is a quan-
tizer with uniform reconstruction-point density. An important corollary of the
uniformity of the reconstruction-point density is that the quantizers are the
same for all distortion measures, which means that we can design an optimal
entropy-constrained quantizer even when the precise distortion measure is not
known.
From equation (14) it follows rewriting that:

gC(x) = 2H(I)−h(X)

∆i = 2−H(I)+h(X)

And obtain that:

D ≈ 1
4

∫
R

fX(x) 1
gC(x)dx

= 1
42−H(I)+h(X)

Thus,
R(D) = H(I) = h(X) − log 4D

This equation shows that, in the high-rate, entropy-constrained case, the lo-
garithm of the RMS distortion is just the difference between the differential
entropy of the variable and the entropy of the quantization indices (plus a con-
stant). As expected, if the entropy of the quantization indices increases, the
distortion decreases.
Consider fX(x) as a Laplace density:

R(D) = log 2e

a
− log 4D (16)

The plot is shown as follows:
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Abbildung 2: The relationship between Rate and Distortion, constrained-entropy

(c) The Rate distortion function is:

R(D) = h(X) − sup
d≤D

h(X − X̂|X̂)

Shannon lower bound given absolute error measure is:

RSLB = h(X) − sup
|Y |≤D

Y

As it turns out, the equations look very similar when the constrained-entropy
case is considered for the high-rate theory. Consider Laplace density for Shannon
Lower bound given distortion limitation D:

RSLB = − log2 aD (17)

And the constrained-entropy equation. (16):

H(I) − R(D)SLB = − log2 4D − (− log2 aD) + log 2e

a
= log2

e

2

That the difference between H(I) and R(D) is constant.
Consider constrained-resolution:

R(D) = log aD

has the same form with the Shannon lower bound generated by rate distortion
function. From the comparison we can conclude that, in practical scenarios the
performance of scalar quantizers(constrained-entropt, constrained-resolution) in
combination with efficient lossless coding is sufficient under the high rate and
identical distributed process.

□
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Solution for Problem 2

(a) The high-resolution quantization means that the quantizer is not constrained-
resolution, that we should consider constrained-entropy. For scalar quantization
with square-error, Given 7.33(Kleijn book):

H(I) = R(D) = h(X) − 1
2 log 12D (18)

For Gaussian variable with variance σ2 (the high resolution relation bet-
ween overall rate and distortion)

H(I) = 1
2 log(σ2

D
) + 1

2 log(2πe

12 ) (19)

The distortion-rate for each of component is:

E(di) = Cσ2
Xi

e−2RXi

where σ2
Xi

is the variance of a random component, and C is a constant. Because
entropy is constrained, the component with lowest distortion should be the di-
rection with the lowest variance(smallest eigen value of the covariance
matrix).
To find the eigenvalues and eigenvectors of the covariance matrix, we need to
solve the characteristic equation:

A = E[XkXkT ] =
[

4
√

2√
2 2

]

det(A − λI) = 0
where A is the covariance matrix, λ is the eigenvalue, I is the identity matrix of
the same size as A.
So we have:

(4 − λ)(2 − λ) = 0
λ2 − 6λ + 6 = 0

Using the quadratic formula, we get:

λ1 = 3 +
√

3
λ2 = 3 −

√
3

The corresponding eigenvectors are:

x1 =
[√

6 +
√

2 2
]

x2 =
[√

2 −
√

6 2
]
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After normalization:

x1 =
[√√

3+1
2
√

3
1√√

6(
√

3+1)

]
x2 =

[
6− 1

4 2√
12−2

√
3

]
x1 and x2 are orthogonal because x1x

T
2 = 0 The x2 is the component with least

distortion.

(b) The Karhunen-Loeve transform(KLT) is a linear transformation that diagonali-
zed the covariance matrix of a random vector. To find the KLT, we first compute
its eigen decomposition.
To raise the linear algebra theories firstly: If B is a symmetric real matrix, then:

B = P
∑

P −1 = P
∑

P T

where ∑ is the diagonal matrix of eigenvalues Of B, and Q’s column vectors are
the eigenvectors of B.

UAUT =
∑

A =


√√

3+1
2
√

3 6− 1
4

1√√
6(

√
3+1)

2√
12−2

√
3

 [
λ1 0
0 λ2

] 
√√

3+1
2
√

3 6− 1
4

1√√
6(

√
3+1)

2√
12−2

√
3


H

that U:

U =


√√

3+1
2
√

3 6− 1
4

1√√
6(

√
3+1)

2√
12−2

√
3


H

=


√√

3+1
2
√

3
1√√

6(
√

3+1)

6− 1
4 2√

12−2
√

3


Such that the Karhunen Loeve transform(KLT) is:

Y = UX

E(Y Y H) = E(UXXHUH) = UAUH =
∑

where ∑ is the diagonal matrix of eigenvalues of matrix A, that

∑
=

[
3 +

√
3 0

0 3 −
√

3

]

that ∑ is the new covariance matrix for Y(generated by X after KLT transfor-
mation)

(c) The total distortion after unitary transform U are:

D =
k−1∑
i=0

Cσ2
Yi

e−2RYi
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That under the entropy-constrained condition, we still want to find the lowest-
variance direction for lowest distortion. To find the component with lowest dis-
tortion, we want to calculate the eigenvalues and eigenvectors for covariance
matrix of Y that:

E(Y Y H) =
∑

=
[
3 +

√
3 0

0 3 −
√

3

]

det(E(Y Y H) − λ) = 0

λ2 − 6λ + 6 = 0

The 2 eigenvalues are:

λ3 = 3 +
√

3
λ4 = 3 −

√
3

The eigenvectors are:

x3 = 0, x4 = 0

The eigenvectors are 0, which means that there are no directions in the input
space owning a non-zero variance, and the transformation de-correlate the data
space completely. Thus, there is no components resulting in a lowest distortion.

(d) Comparing results of (a) the lowest component performing lowest distortion,
and (c) there no specific components performing lowest distortion in the trans-
formed space, when the eigenvalues do not change, which means that they can
both achieve the lowest distortion. We can conclude that, for KLT transforma-
tion, which de-correlate the data space would allow low distortion within more
components. And KLT also maximize the coding gains at the same time. Such
that KLT(Karhunen-Loeve transform) is the best strategy.

□
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