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Abstract: Existing dehazing methods based on convolutional neural networks estimate the transmission map by treating
channel-wise features equally, which lacks flexibility in handling different types of haze information, leading to the poor
representational ability of the network. Besides, the scene lights are predicted by an even illumination prior which does not work
for a real situation. To solve these problems, the authors propose a dense residual channel attention network (DRCAN) for
estimating the transmission map and use an image segmentation strategy to predict scene lights. Specifically, DRCAN is built
based on the proposed dense residual block (DRB) and dense residual channel attention block (DRCAB). DRB extracts the
hierarchical features with increasing receptive fields. DRCAB makes the network focus on the features containing heavy haze
information. After the transmission map is estimated, fuzzy partition entropy combined with graph cuts is used to segment the
transmission map into scene regions covered with varying scene lights. This strategy not only considers the fuzzy intensities of
the low-contrast transmission map but also takes spatial correlation into account. Finally, a clear image is obtained by the
transmission map and varying scene lights. Extensive experiments demonstrate that our method is comparable to most of
existing methods.

1 Introduction
Intelligent technologies, including artificial intelligence and
machine intelligence, are constantly evolving. Artificial
intelligence empowers computers to perform human-like tasks
more efficiently, while machine learning aids the computer to
finish these tasks by breaking traditional rules. Hence, many
electronic systems have rapidly emerged utilising machine
intelligence. As a component of machine intelligence, machine
vision relies on image pre-processing technology to extract
information from images for performing visual tasks in electronic
systems [1, 2]. For example, SAR imaging system uses kurtosis
wavelet energy function to form texture features and use support
vector machines (SVMs) to implement texture recognition [3].
Remote sensing systems utilise spectral clustering methods to
obtain the accurate texture and colour features for segmenting
polarimetric synthetic aperture radar images [4]. Since the outdoor
images usually suffer from degradations, e.g. low contrast and low
saturation, image dehazing technologies have become a necessary
image processing method for intelligent systems [5–7]. Especially,
automated parking systems rely on image dehazing to generate
clear images for recognising vehicles and pedestrians [8]. Marine
monitoring systems depend on image dehazing to obtain contrast-
enhanced images for identifying ships [9].

To achieve image dehazing, single image dehazing methods
based on atmospheric scattering models have been extensively
studied [10–12]. Physical image processing is formulated as

I(x) = Aρ(x)t(x) + A(1 − t(x)), (1)

where x is the index representing a pixel. I represents the observed
hazy image. ρ denotes the scene radiance and also represents the
clear image which needs to be estimated. A is the global
atmospheric light and is usually set to a constant. t(x) is the

transmission map describing the portion of light that is not
scattered and reaches a camera.

However, predicting ρ from (1) is difficult due to its ill-posed
nature. It can be observed from (1) that multiple solutions can be
found given a known hazy image I. Most existing methods attempt
to solve this problem by estimating the transmission map and the
atmospheric light via handcrafted priors. As an example, He et al.
[11] presented the famous dark channel prior (DCP) based on the
observation that some pixels in a local patch have very low
intensity values in at least one of the RGB channels. Zhu et al. [12]
proposed a colour attenuation prior (CAP) to estimate the
transmission map using the scene depth. Fattal [13] and Berman et
al. [14] further proposed the non-local prior (NLP) to estimate the
transmission map. However, these priors depending on the
statistical properties of a hazy image to estimate the transmission
map cannot work well for all the cases, leading to inaccurate
predicted results. Typically, DCP cannot predict accurate
transmission values for the white objects in the scene which have
similar colours as the sky regions. For refining the transmission
map, Chen et al. [15] proposed gradient residual minimisation
(GRM) for recovering a clear image after refining the transmission
map via depth-edge-aware smoothing. Meng et al. [16] explored
the boundary constraint and contextual regularisation (BCCR) on
patch-wise transmission map for recovering a high-quality haze-
free image. Zhao et al. [17] further proposed the multi-scale
optimal fusion (MOF) model to fuse pixel-wise and path-wise
transmission maps effectively, avoiding erroneously estimated
transmission regions and halo artefacts. Xu et al. [18] proposed a
fusion model to combine patch-wise and pixel-wise dehazing
operators for overcoming halos and over-saturation. Although,
these handcrafted prior based methods can improve the accuracy of
the predicted transmission map, the possibility of uneven
illumination in the scene is not considered at all. Consider Fig. 1 as
an example, under even illumination, the camera in Fig. 1a only
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receives the atmospheric light reflected from objects, which leads
to a fixed A in the Aρ(x)t(x) term of (1). In reality, the reflected
scene light and the atmospheric light all contribute to the final
image. Hence, the camera not only receives the atmospheric light
but also receives scene light reflected from objects which are not
exposed in the atmospheric light directly (e.g. the trunk of the tree
in Fig. 1b). To better describe the imaging process, Yoon et al.[19]
proposed a wavelength-adaptive physical model (WAPM) without
using a even illumination assumption and estimate the transmission
map by an image segmentation strategy. As a further step, Ju et al.
[20] proposed an improved atmospheric scattering model (IASM),
where the atmospheric light and the varying scene light are
calculated for addressing the uneven illumination problem.
However, the transmission map is predicted by a linear model
which cannot properly describe the relationships between the
distribution of haze and the image properties.

Recently, deep learning-based methods have been widely used
for many computer vision tasks, e.g. change detection, depth
estimation, image restoration and image classification [21–23].
Generally speaking, these learning methods can be classified into
two categories: one is supervised learning and the other is
unsupervised learning. Deep belief networks (DBNs), which
consists of multiple restricted Boltzmann machines (RBMs), are
considered as an example which exploits both supervised and
unsupervised approaches to learn network parameters. Specifically,
RBMs are trained first, in an unsupervised manner, to initialsze the
network parameters. Then, the parameters of the whole network are
learned in a supervised approach based on an evaluation metric.
Motivated by the growth of DBNs, it has been applied to the
change detection field. For example, Samadi et al. [24] train the
DBN with diverse data provided by morphological operators and
employ the trained DBN to achieve change detection in SAR
images. Owing to the advantage of providing diverse training data,
this strategy can also be used in image dehazing.

On the other hand, convolutional neural networks (CNNs) are
viewed as a supervised approach. In CNNs, it is necessary to have
the labels of all the data for the training network. Hence, one
common strategy is to build network architecture for learning the
mapping relationship between a hazy image and a labelled clear
image. Li et al. [25] first proposed the all-in-one dehazing network
(AODN) to estimate the haze-free image without all the

intermediate processing. Zhang et al. [26] proposed a perceptual
pyramid deep network (PPDN) to directly learn a non-linear
function between a hazy and a clear image. Qu et al. [27] proposed
the enhanced pix2pix dehazing network (EPDN), motivating by the
success of generative adversarial networks in image translation.
Later, for enabling the mapping relationship learned between the
hazy image and the clear image to be more reliable, more methods
incorporate statistical regularities or information fusion strategy
into the dehazing model. Zhang et al. [28] proposed the fully point-
wise CNN (FPCNet) for modelling statistical regularities in hazy
images. Zhang et al. [29] proposed a fast and accurate multi-scale
end-to-end dehazing network (FAMED-Net) by comprising
encoders at three scales and a fusion module for multi-scale
information fusion. Ren et al. [30] proposed a gated fusion network
(GFN) to estimate a clear image by fusing three derived images of
the original hazy image effectively. Based on GFN, Liu et al. [31]
further proposed the GridDehazeNet for image dehazing, which
adopt the pre-processing module to convert a hazy image to several
derived images for information fusion, and then introduce the post-
processing module for improving the quality of the clear image.
Comparing with the GFN, all the modules in the GridDehazeNet
are fully trainable, which is in line with the performance of data-
driven methods. Although these network models can automatically
obtain a clear image from a hazy image, some physical parameters
in the atmospheric scattering model, e.g. atmospheric light and
transmission map, are not estimated separately. Once the
transmission map or the atmospheric light needs to be explored in
computer vision tasks, the end-to-end dehazing network cannot
meet practical requirements. Hence, some methods are prone to
estimate the transmission map and atmospheric light, separately.
For instance, the densely connected pyramid dehazing network
(DCPDN) proposed by Zhang and Patel [32] jointly learns the
atmospheric light, transmission map and dehazing result
simultaneously. The DehazeNet proposed by Cai et al. [33] maps a
hazy image to a transmission map, and uses the empirical rules to
acquire the atmospheric light. For improving the precision of the
transmission map, Ren et al. [34] used a multi-scale CNN
(MSCNN) to predict the transmission map and optimise it later by
a refinement stage. However, there are still two factors hindering
the performance of these methods. First, existing CNN based
methods treat all the channel-wise features equally which lacks
flexibility in handling different types of information among
discriminative channels, leading to the poor representational ability
of the network. In reality, different channel-wise features carry
different information. For the case of estimating the transmission
map, some channel-wise features contain more information related
to heavy haze concentration, while others may carry more
information about light haze concentration. Since heavy haze
removal is more difficult than light haze removal, we make the
network focus on heavy haze information more. Hence, the
interdependencies among channels should be explored for accurate
image dehazing. Second, with the predicted transmission map and
atmospheric light, this strategy still estimates the clear image
following (1) which does not consider uneven illumination.

To mitigate the first issue, we resort to the attention mechanism
which can be viewed as a strategy to allocate the available
computational resources towards the most formative components
of the input. Due to attention weights being assigned to channel-
wise features, the useful components of the input are found and
paid more attention to for achieving different computer vision
tasks, such as object recognition, image classification and image
restoration [22, 23, 35, 36]. However, few researchers have
investigated the effect of channel-wise attention mechanism in
image dehazing. Considering that the transmission map is related
to haze concentration, we propose the Dense residual channel
attention network (DRCAN) which can assign more computational
resources towards informative channel-wise features, e.g. the
features carrying more information related to heavy haze
concentration. To address the second issue, we combine the
maximum fuzzy entropy with graph cuts to obtain different regions
for predicting varying scene lights. To be specific, DRCAN is
designed based on the encoder–decoder architecture, where the
proposed dense residual block (DRB) and dense residual channel

Fig. 1  Physical atmospheric scattering model for different cases
(a) Even illumination case, (b) Uneven illumination case
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attention block (DRCAB) are used as the basic building modules.
DRB in the encoder is proposed based on the inspiration of the
residual dense block (RDB) from [37], which contains feature
processing, dense connections and the adaptive residual learning
mechanism. DRCAB obtained by incorporating a channel-wise
attention mechanism into DRB captures more informative channel-
wise features for guiding the decoding process. After the
transmission map is estimated by DRCAN (Fig. 2b), the IASM
proposed by Ju et al. [20] is adopted for estimating the clear image. 
This model allows us to estimate a clear image by varying scene
lights. Here, an image segmentation strategy is used for segmenting
the transmission map into the distant, medium and nearby scenes,
since the scene light varies with depth. Common SAR image
segmentation strategies which can successfully segment degraded
SAR images by capturing texture features, can also be used here,
e.g. CNN and multilayer perceptron (CNN-MLP) [9] and SVM [3].
However, considering the fuzzy intensities of nearby and distant
scenes, a maximal fuzzy entropy segmentation combined with
graph cuts optimisation is selected for segmenting the transmission
map (Fig. 2c). Such a strategy not only considers the fuzzy
intensity of the low-contrast transmission map, but it also takes the
spatial correlation into account. Finally, a clear image (Fig. 2e) can
be obtained by the predicted transmission map (Fig. 2b) and
optimal scene lights (Fig. 2d). Extensive experiments demonstrate
that our method can achieve better accuracy and visual results over
state of the art methods. The flowchart of the proposed method is
shown in Fig. 2. We believe our method can work well in vehicular
systems, marine monitoring systems, remote sensing systems and
so on. For example, Sharifzadeh et al. [9] proposed a ship
classification strategy by using a pre-processor, a detector and a
hybrid CNN-MLP. To reduce false alarms, we can incorporate the
proposed DRCAB into CNN-MLP to get rid of interfering clutter
edges and speckles, and pay attention to the texture features of
SAR images for classification.

There are three contributions of our network:

• We propose the DRCAN for accurately estimating the
transmission map. By applying the proposed DRCAB in the

network, the informative channel-wise features can be given much
more attention.
• For taking uneven illumination into account, the varying lights
are calculated from its covered regions. Here, we combine the
maximal fuzzy entropy with a graph cuts strategy to segment the
transmission map into different regions. Such a strategy not only
considers the fuzzy intensity of the low-contrast transmission map,
but it also takes the spatial correlation into account, to estimate
varying lights from accurate scenes.
• Extensive experiments demonstrate that our method can achieve
better dehazing effect over state of the art methods by using a
predicted transmission map and varying scene lights.

2 Proposed method
2.1 Atmospheric scattering model with uneven illumination
prior

For overturning the even illumination assumption in (1), Ju et al.
[20] took varying scene lights into account and redefined the
atmospheric scattering model as

I(x) = Riρ(x) + A(1 − t(x)), x ∈ Ei, (2)

where x is the index of a pixel, Ei refers to the pixel set of the ith
scene, Ri denotes the scene light in the ith scene, A is the
atmospheric light and t is the transmission map. As only the
observed image I is known, recovering the scene radiance ρ from
(2) is an ill-posed problem. We need to estimate ρ based on I by
estimating A, Ri and t.

2.2 DRCAN for estimating the transmission map

In this section, we propose the DRCAN based on the encoder–
decoder architecture for directly estimating a transmission map
from a hazy image. As observed in Fig. 3, our DRCAN model has
four parts: shallow feature extraction, encoder, decoder and
mapping layer. Now, we give more details on these components in
DRCAN.

Shallow feature extraction: Previous research has shown that
shallow features such as edges, textures and contours, are crucial
for image restoration [22]. Similar to existing CNNs which utilise
the convolution and pooling operations to extract edges and
texture, we leverage the same strategy to implement shallow
feature extraction. The related operation can be expressed as:

Fs = HSF(I), (3)

where I is a hazy input. HSF is the composite function of shallow
feature extraction which actually includes the pooling, Rectified
Linear Unit (ReLU), Batch Normalisation and a convolutional
layer with stride equal to 2. The output of shallow feature
extraction denoted by Fs also serves as the input to the subsequent
encoder.

Encoder: The encoder is used for extracting the hierarchical
features with increasing receptive field size. By taking advantage
of the dense and residual net, DRB is proposed as the basic
building model in the encoder. Besides, for capturing more
informative channel-wise features, the proposed DRCAB is applied
at the end of the encoder, after the last DRB (see Fig. 3). More

Fig. 2  Flowchart of the proposed method
(a) Hazy image, (b) Transmission map, (c) Segmented scene lights, (d) Optimal scene
lights, (e) Clear image

 

Fig. 3  Overall architecture of the proposed DRCAN model
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details about DRB and DRCAB are given in Sections 2.3 and 2.4,
respectively. We formulate the encoder as

Fd = HEN(Fs)
= HDRBCAB(HDRB, d(⋯(HDRB, 1(FS))⋯)), (4)

where HEN( ⋅ ) is the function of the encoder which contains d
DRBs and 1 DRCAB. HDRB, d denotes the operations of the dth
DRB. HDRCAB denotes the function of DRCAB. Fd is the output of
the encoder.

Decoder: The decoder expands Fd by symmetrical de-
convolutional layers. For further exploiting the inter-dependencies
among channel-wise features and guiding the decoding process
with informative input, the first de-convolutional layer in the
beginning of the decoder is equipped with the proposed DRCAB.
The output of the decoder Fd can be calculated as

Fb = HDE(Fd) = HDECOV, b(⋯HDECOV, 3(
HDECOV, 2(HDRCAB(HDECOV, 1(Fd))))⋯), (5)

where HDE( ⋅ ) denotes the function of the decoder which contains
1 DRCAB and b de-convolutional layers. Fb is the output of the
decoder. HDECOV, b represents the bth de-convolution function.

Mapping layer: One convolutional layer is used at the tail of the
network to map the learned features into a transmission map. Such
a post-processing design can refine the transmission map and
obtain accurate results

Fm = HMAP(Fb), (6)

where HMAP( ⋅ ) and Fm denote the mapping function and the
corresponding output, respectively.

2.3 DRB architecture

Inspired by the advantages of Dense Net [38] and Residual Net
[39], Zhang and co-authors proposed a RDB to explore hierarchical
features via dense connected layers and a residual learning layer
(see RDB model in Fig. 4). Due to the convincing advantages of
RDB, we also propose DRB based on RDB as the basic building
module for the encoder. However, there are two main differences
between RDB and DRB: First, RDB is designed for image super-
resolution. Hence, each layer in the densely connected layers of
RDB has direct access to the original low-resolution information
for implicit deep supervision, as the red line in the densely
connected layers in RDB. Our proposed DRB is designed for
image dehazing and predicts the transmission map by learning the
residuals between the hazy image and the ground truth of the
transmission map. Therefore, we mainly focus on dense
information fusion and residual learning, as the DRB in Fig. 4.
Second, the stacked RDBs in the network [37] are used for
extracting features with a fixed scale, enabling the network to
obtain the higher resolution features for image super-resolution. We

embed the DRB into the encoder–decoder architecture for
extracting hierarchical features with varying feature size, leading to
an increasing receptive field for image dehazing.

Based on the above discussion, DRB consists of feature
processing, dense information fusion and adaptive residual
learning, as shown in Fig. 4.

Feature processing is applied for rescaling the feature size and
obtaining global information. Since the DRB used for building the
encoder is expected to have the ability of adaptively rescaling
feature size, we adopt a feature processing layer to reduce the
feature size of the input and extract the global information. In the
implementation, one possible solution is to perform the pooling
operation for obtaining a larger image scope. However, this
strategy may loose much of the details. To alleviate this problem,
we use a convolutional layer with stride equal to 2 to implement
feature processing. Let the input feature be denoted by Fu, the
related operation is defined as:

Fu, fp = HFP(Fu), (7)

where HFP denotes the composite function of Batch Normalisation,
ReLU and one convolutional layer with stride equal to 2. Fu, fp is
the output of the feature processing layer in the current RDB.

Dense information fusion is performed by a six-layer dense
block, which is provided in a pre-trained dense-net121 [38].
Serving as an extractor, it can extract hierarchical features during
the encoding. The related function can be defined as

Fu, dn = HDI, n([Fu, fp, Fu, d1, Fu, d2…, Fu, dn − 1]), 1 ≤ n ≤ 6, (8)

where [Fd, fp, Fu, d1, Fu, d2…, Fu, dn − 1] refers to the concatenations of
the feature-maps produced by the n − 1 convolutional layers in the
dense block. HDI, n denotes the function of the 1 × 1 convolutional
layer in the nth layer of the dense block. Fu, dn is the corresponding
output of the current nth convolutional layer.

Adaptive residual learning is implemented by adding input Fu
into the output of the dense information fusion. Considering that
the feature size of Fu, dn is half the size of the input feature Fu, a
convolutional layer with the stride of 2 is used before
implementing residual learning. Such an operation can make the
size of the input Fu half the size of its original resolution and
enable the residual learning to be performed smoothly. Owing to
the adaptive rescaling of the feature size, we refer to this residual
learning as adaptive residual learning and the related operation is
defined as

Fu, ar = Fu, dn + HAR(Fd − 1), (9)

where HAR denotes the function of the convolutional layer with
stride equal to 2, and Fu, ar is the corresponding output.

Fig. 4  Proposed DRB and previous RDB
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2.4 DRCAB architecture

Differing from existing decoders which employ the
deconvolutional layers to reconstruct the transmission map without
a channel-wise distinction, we apply the DRCAB at the end of the
encoder and at the beginning of the decoder for exploring the inter-
dependencies across the channel-wise features (see Fig. 3)

From Fig. 5, we observe that DRCAB is obtained by inserting
the channel attention mechanism into the slot between the dense
information fusion and adaptive residual learning in DRB. More
details on the channel attention mechanism can be found in Fig. 6. 
Let Fv be the input of DRCAB in the decoder, Fv, dn ∈ RH × W × C in
Fig. 5 can be obtained after Fv goes through the dense information
layer which consists of a six-layer dense block, where H, W and C
are height, width and the number of channels, respectively. For
exploiting the inter-dependencies among channel-wise features, we
first squeeze the spatial information into a channel descriptor. In
our implementation, global average pooling is used for generating
a set of local aggregated information. Hence, the local channel
descriptor can be obtained by the channel-wise average value zv

c via

zv
c = 1

H × W ∑
i = 1

H

∑
j = 1

W
Fv, dn

c (i, j), (10)

where Fv, dn
c (i, j) is the value at position (i,j) of the feature Fv, dn

c  in c
channel, and zv

c is the aggregated vector. Such a design allows the
descriptor to express the whole image.

Then, we introduce a gating mechanism (the sigmoid function)
for generating the attention weights α for each channel. Instead of
using all the features, we focus on the informative features that
have higher attention weights. The related operation is defined as

α = f (W1δ(W2zv)), (11)

where W1 ∈ Rt × c and W2 ∈ Rc × t are learning weights of two fully
connected layers; t is the reduction ratio, δ( ⋅ ) is the ReLU function
and f ( ⋅ ) is the sigmoid function. By multiplying the attention
weights α with the features Fv, dn, the useful features can be
adaptively rescaled and highlighted, obtaining output Fv, dn in Fig.

5. Meanwhile, Fv, dn

c  in c channel is calculated by

Fv, dn

c = Fv, dn
c ⋅ αc (12)

2.5 Loss function

Inspired by the success of the combined loss function used in
PPDN [26], the DRCAN is trained by minimising the combined
loss function, including the standard L2 loss function, the gradient
LG loss function and feature edge LF loss function. Formally, the
loss function can be defined as

L = L2 + λLG + βLF, (13)

where λ and β are the regulation coefficients for terms LG and LF.
Let {Ii, ti}i = 1

N  represent a pair of haze image and its corresponding
transmission map and HDRCAN denote the function of DRCAN.
Then, we can compute L2 as

L2 = 1
N ∑

i = 1

N
∥ HDRCAN(Ii) − ti ∥2 (14)

Similarly, given Gv and Gh, which are the gradient functions
along the vertical and horizontal directions, respectively, we can
obtain

LG = 1
N ∑

i = 1

N
∥ Gv(HDRCAN(Ii) − Gv(ti) ∥2

+ ∑
i = 1

N
∥ Gh(HDRCAN(Ii) − Gh(ti) ∥2

(15)

LF is defined using hierarchical features extracted by the pre-
trained VGG-16 network [40] following (16). Where F f 1 and F f 2
are extracted high-level features, such as edge and texture
information, from the first and second layers of the VGG-16
network

Fig. 5  Proposed DRCAB
 

Fig. 6  Channel attention mechanism
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LF = 1
N ∑

i = 1

N
∥ F f 1(HDRCAN(Ii) − F f 1(ti) ∥2

+ ∑
i = 1

N
∥ F f 2(HDRCAN(Ii) − F f 2(ti) ∥2 .

(16)

2.6 Estimation of the scene incident light and atmospheric
light

As mentioned in Section 2.1, the scene incident light Ri should be
estimated from the regions it covers. Here, we try to segment the
predicted transmission map into distant, intermediate and nearby
scenes, because of the light variation with depth. Differing from
Yoon et al.'s [19] method, which utilises a threshold-based strategy
(fuzzy partition entropy) to partition scene regions, we combine
fuzzy partition entropy with graph cuts to implement segmentation.
Such a design not only considers the fuzzy intensity in a low-
contrast transmission map, but it also takes the spatial correlation
into account. Consider Fig. 2b as an example, compared to
performing the fuzzy partition entropy directly (Fig. 7a), our
strategy can remove isolated noise and avoid an object with low
transmission values in the nearby scene being misclassified into the
sky regions in the distant scene (Fig. 7b). 

In our previous papers [41, 42], a segmentation strategy
composed of the fuzzy partition entropy and graph cuts
optimisation was proposed for multilevel segmentation. In
addition, an iterative scheme was utilised for improving the
computational efficiency of fuzzy partition entropy. Here, the same
segmentation approach is adopted to segment the transmission
map. Since the goal is to segment the transmission map into three
fuzzy sets, referred as the distant scene set Ed, the intermediate
scene set Em and the nearby scene set Ec, we select the S-function,
Z-function and M-function to build the fuzzy three-partition
entropy (see Appendix 1 for the definitions of S-function, Z-
function and M-function). Then, fuzzy set probabilities Pc, Pm and
Pd of sets Ec, Em and Ed are defined as

Pc = ∑
k = 0

255
h(k)S(k),

Pm = ∑
k = 0

255
h(k)M(k),

Pd = ∑
k = 0

255
h(k)Z(k),

(17)

where h( ⋅ ) represents the normalised histogram function, which
calculates the occurrence probability of an assigned grey level k.
Thus, the total fuzzy entropy of the transmission map can be
obtained as

H(u1, v1, w1, u2, v2, w2) = −Pclog(Pc) − Pmlog(Pm)
−Pdlog(Pd), (18)

where u1, v1, w1, u2, v2, w2 are parameters of the S-function, the Z-
function and the M-function.

The most appropriate fuzzy three-partition probabilities can be
obtained by maximising (18). Here an iterative scheme proposed in
our previous work [41, 42] is used to search the maximal entropy
efficiently, which performs iterative calculation by three separated
sum operations with two parameters, hence the time complexity is
O(n2). To make a further optimisation, multi-label graph cuts is
performed based on the obtained fuzzy set probabilities to ensure
the spatial correlation. To be specific, the data cost Tdata of graph
cuts is designed by Pc, Pm and Pd

Tdata(lp = `close scene′) = − log(Pc),

Tdata(lp = `medium scene′) = − log(Pm),

Tdata(lp = `distant scene′) = − log(Pd),

(19)

where lp is the label of pixel p.
The smoothing term Tsmooth of graph cuts is defined based on

the definition in reference [42] as

Tsmooth = exp( − (kp − kq)2

2σ2 ) × 1
dist(p, q) , (20)

where kp and kq denote the grey levels of adjacent pixels p and q
respectively, dist(p, q) represents the Euclidean distance between
pixels p and q. σ refers to the level of variation between adjacent
pixels in the image and stays in the range [0, 1]. After Tdata and
Tsmooth are set for all the pixels in the graph cuts model, the optimal
label assignment for Ei is achieved by the α–β swap algorithm [43],
see Appendix 2 for details.

Once the segmented Ei is obtained, we choose the top 1%
brightest pixels in a hazy image from the Ei region. Then, the
coarse Ri can be obtained by calculating the average intensity of the
pixels in the corresponding Ei region. Consider Fig. 2b as an
example, the coarse R is displayed in Fig. 7b. Note that the scene
light covering the distant scene region is selected as the
atmospheric light A.

Furthermore, for refining and conforming R closely to realistic
ambient light, we adopt the regularisation optimisation from [20]
for enhancing the edge information

R = argmin ∥ R − R ∥2
2 + θ1∥ ▽(R) − ▽(G) ∥2

2 , (21)

where θ1 is the regularisation parameter which by default is set to
0.4. G refers to the luminance component of the hazy image I. ▽
is the gradient operation. The first term of (21) ensures that the
optimal scene light R approximates the segmentation result R,
while the second term imposes the edge features in R
corresponding to the ones in the guiding image G. For solving (21)
effectively, the iterative strategy from [20, 44] is adopted and the
specific iterative form is expressed as

Rk(x) = Rk(x) − θ1 ∑
x ∈ N

(Rk − 1(x) − G(x))

+ N G(x) /(1 − θ1 N )
(22)

where x is the index representing a pixel; Rk(x) and Rk − 1(x)
represent the R of the (k − 1)th and the kth iteration, respectively;
x ∈ N denotes a wd × wd local region N with x in the centre. N
defines the number of pixels in N. We set the initial state R0 as R
and G as the luminance component of the hazy image I. The
iteration is finished when the Euclidean Distance between Rk and
Rk − 1 is <0.001. Consider an aerial image (see Fig. 2a) as an

Fig. 7  Estimation of scene lights in an aerial image
(a) Scene lights obtained by the maximal fuzzy partition entropy segmentation, (b)
Scene lights obtained by the fuzzy partition entropy and graph cuts optimisation, (c)
Optimal scene lights obtained with window size wd = 2 in a regularisation
optimisation strategy, (d) Optimal scene lights obtained with window size wd = 7 in a
regularisation optimisation strategy
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example, Fig. 7a is the fuzzy three-partition result of the
transmission map in Fig. 2b, while Fig. 7b is the graph cuts result
of Fig. 7a. Figs. 7c and d show optimal scene lights obtained with
different window sizes wd in the regularisation optimisation
strategy. Note that the parameter wd is important for obtaining the
optimal scene light. A small window size with wd = 2 results in an
obvious science light boundary, e.g. Fig. 7c, while a big window
size such as wd = 25 leads to over-smooth transition for the scene
light in different the scene regions. Hence, it is necessary to set a
proper wd value for obtaining the scene lights. For Fig. 2a, where
depth changes gradually and the corresponding close, medium and
distant scenes are not easy to discriminate, the best wd is set to 7
empirically and the corresponding result is shown in Fig. 7d. As
can be seen, not only do the scene lights in different segmented
regions have different luminance values but also the border among
these scene lights are natural. For further testing the robustness of
the regularisation optimisation strategy, a flower image (see Fig.
8a) with obvious close, medium and distant scenes is also selected
for estimating scene lights with different wd. After performing
extensive experiments with different wd, we find a similar
conclusion also fits this kind of images. As displayed in Fig. 8, the
satisfying scene light (Fig. 8d) can be obtained based on the
segmented result (Fig. 8b) with window size wd=7, while the
inferior scene light (Fig. 8c) with unnatural border is obtained with
window size wd=2. Hence, the widow size wd is set to 7 in our
experiments.

2.7 Recovering the scene radiance

With the estimated transmission map, the varying scene light and
the atmospheric light, we can recover the scene radiance according

to (23). Simultaneously, to avoid producing too much noise and
preserve a small amount of haze in the scene radiance, we restrict
the transmission map t to a lower bound t0. Then, the scene
radiance can be expressed by

ρ = I − A(1 − t)
R max (t, t0)

, (23)

3 Experiments
In this section, we compare our proposed method with five state of
the art image dehazing methods DCP-based dehazing method
proposed by He et al. [11], WAPM-based dehazing method
proposed by Yoon et al. [19], IASM-based dehazing method
proposed by Ju et al. [20], AODN by Li et al. [25], and PPDN
proposed by Zhang et al. [26]. Among these algorithms, DCP [11],
WAPM [19] and IASM [20] are handcrafted prior based methods.
While AODN [25] and PPDN [26] are CNN-based methods. In
order to verify the performance of different methods, we conduct
tests on synthetic data sets and real world images with visual
effects (see Figs. 9–19) and quantitative measures (see Tables 1
and 2).

3.1 Data sets

Recently, a public RESIDE data set which collects abundant
synthetic hazy images, depth images and corresponding clear
images was released for single image dehazing [45]. For training
DRCAN and testing the performance of the proposed method
effectively, we randomly select 4000 synthetic outdoor images with
β ∈ {0.04, 0.06, 0.08, 0.1, 0.12, 0.16, 0.2} and A ∈ {0.8, 0.85, 0.9}
to create a training data set. Simultaneously, the corresponding

Fig. 8  Estimation of scene lights in a flower image
(a) Original hazy image, (b) Scene lights obtained by the fuzzy partition entropy and graph cuts optimisation, (c) Optimal scene lights obtained with window size wd = 2 in a
regularisation optimisation strategy, (d) Optimal scene lights obtained with window size wd = 7 in a regularisation optimisation strategy

 

Fig. 9  Transmission results for the synthetic hazy image 1
(a) Input, (b) DCP [11], (c) IASM [20], (d) WAPM [19], (e) PPDN [26], (f) Proposed work

 

Fig. 10  Transmission results for the synthetic hazy image 2
(a) Input, (b) DCP [11], (c) IASM [20], (d) WAPM [19], (e) PPDN [26], (f) Proposed work
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transmission maps which are calculated by providing depth images
are also used for training. Similarly, another 400 outdoor images
with the corresponding transmission maps and clear images are
randomly selected for testing. In addition, the sub-data set SOTS
from RESIDE containing 500 outdoor images with different haze
concentration and corresponding clear images is also employed as
the testing data set.

3.2 Comparison of transmission map

In this subsection, we first give the implementation details of
DRCAN in Section 3.2.1. Then, we further investigate the effects

of different components and basic network parameters of DRCAN
in Section 3.2.2. Finally, the accuracy of estimated transmission
maps is verified by comparing DRCAN with existing methods.

3.2.1 Implementation details of DRCAN: We use three DRBs,
one DRCAB in the encoder and three de-convolutional layers and
one DRCAB in the decoder. Note that the last RDB in the encoder
and the first de-convolutional layer in the decoder are equipped
with DRCABs for capturing informative data. In each DRB and
DRCAB, we used a six-layer dense block with a growth rate of 32
for dense information fusion. All the kernel sizes of convolution

Fig. 11  Synthetic hazy images and its corresponding ground truths
(a) Synthetic hazy image 1, (b) Ground truth of image 1, (c) Zoom-in details of the ground truth of image 1, (d) Synthetic hazy image 2, (e) Ground truth of image 2, (f) Zoom-in
details of the ground truth of image 2

 

Fig. 12  Dehazing results of the synthetic hazy image 1
(a) DCP [11], (b) IASM [20], (c) WAPM [19], (d) PPDN [26], (e) AODN [25], (f) Proposed work. The numbers (PSNR/SSIM) are given under each method and the best results are
highlighted in bold

 
Table 1 Quantitative SSIM results for the transmission map and SSIM/PSNR results for scene radiance on the synthetic
testing data set

DCP [11] IASM [20] WAPM [19] PPDN [26] Proposed work
transmission 0.8736 0.8961 0.8864 0.9543 0.9742
image 0.8243/17.59 0.8596/19.54 0.8469/18.79 0.9312/23.87 0.9510/28.56
 

Table 2 Average PSNR and SSIM comparisons on the outdoor images of SOTS. italic, bold and bold-italic fonts are used to
indicate top first, second and third best performance

DehazeNet [33] AODN [25] DCPDN [32] GFN [30] EPDN [27] MSCNN [34] FAMED-Net [29] FPCNet [28]
PSNR 22.46 20.29 19.93 21.55 22.57 22.06 29.03 22.75
SSIM 0.8514 0.8765 0.8449 0.8444 0.8630 0.9078 0.9570 0.9014

GridDehazeNet [31] MOF [17] DCP [11] NLP [14] CAP [12] BCCR [16] GRM [15] proposed work
PSNR 30.86 18.61 19.13 19.26 18.88 14.06 19.15 27.62
SSIM 0.9819 0.873 0.8148 0.6190 0.7980 0.5660 0.8633 0.9505
 

Fig. 13  Zoom-in details of Fig. 12
(a) DCP [11], (b) IASM [20], (c) WAPM [19], (d) PPDN [26], (e) AODN [25], (f) Proposed work
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and deconvolutional layers are set to 3 × 3, except for the
convolution layer in the shallow feature extraction, where the
kernel size is 7 × 7. During training, we use ADMA as the
optimisation algorithm with β1 = 0.5, β2 = 0.999 and ϵ = 10−8. The
original learning rate and batch size are set to 0.002 and 2. All the
training images are resized to 512 × 512 before training. Training

DRCAN roughly takes two days on the Pytorch platform with
NVIDIA RTX 2080 Ti GPU for 800, 000 iterations.

3.2.2 Ablation study: The proposed DRB and DRCAB are
significant contributions of this work. Therefore, in the ablation
study, we first verify the effectiveness of these two modules. Then,

Fig. 14  Dehazing results of the synthetic hazy image 2
(a) DCP [11], (b) IASM [20], (c) WAPM [19], (d) PPDN [26], (e) AODN [25], (f) Proposed work. The numbers (PSNR/SSIM) are given under each method and the best results are
highlighted in bold

 

Fig. 15  Zoom-in details of Fig. 14
(a) DCP [11], (b) IASM [20], (c) WAPM [19], (d) PPDN [26], (e) AODN [25], (f) Proposed work

 

Fig. 16  Real hazy images
(a) Real building image, (b) Real overbridge image, (c) Real Tian An Men image

 

Fig. 17  Dehazing result of real building image
(a) DCP [11], (b) WAPM [19], (c) IASM [20], (d) PPDN [26], (e) AODN [25], (f) Proposed work

 

Fig. 18  Dehazing result of real overbridge image
(a) DCP [11], (b) WAPM [19], (c) IASM [20], (d) PPDN [26], (e) AODN [25], (f) Proposed work
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we further verify the effects of basic parameters in the DRCAN,
e.g. adaptive residual learning in DRB and DRCAB, channel-wise
attention mechanism in DRCAB and number of DRCAB in the
network.

To test the effectiveness of DRB and DRCAB, we keep all the
other configurations the same as DRCAN, except for replacing
DRB with RDB [37] and replacing DRCAB with RDCAB, which
is generated by incorporating the channel-wise attention
mechanism into RDB. Since RDB captures hierarchical features
with fixed scale, the output features of the encoder have the same
spatial size of the input image. For keeping symmetrical feature
size, we further use convolution layer with a stride of 1 to take
place with the de-convolution layer in the decoder. Then, this
variant model denoted as RDCAN is obtained. Compared to our
DRCAN whose average SSIM is 0.9742 on 400 outdoor testing
images, RDCAN performs very poorly with SSIM = 0.9329. This
result demonstrates that using RDBs and RDCABs in our dehazing
network cannot capture hierarchical features with varying scales
and results in poor performance.

Based on the above conclusion, we further verify the effects of
basic parameters in our DRCAN. To this end, seven configurations
of the proposed network are evaluated on the testing data set and
related results are shown in Table. 3. In order to explicitly describe
each configuration, special notations, e.g. ×, √ and numbers, are
used in Table 3. Where the component marked with × means this
component is removed for testing, otherwise the component
marked with √ means it is kept in the network. The numbers in
Table 3 represent the number of different components in the current
configuration.

To demonstrate the effects of DRB and DRCAB, we first
remove the adaptive residual learning and the channel-wise
attention mechanism from DRB and DRCAB in Experiment 1.
Thus, both of these two blocks are degraded into a dense block.
Simultaneously, we set the number of DRCAB in the encoder and
the decoder to 1 and 1. From Table 3, we find that Experiment 1
works poorly with SSIM=0.9541. We further use Experiment 1 as
the baseline for testing the effect of adaptive residual learning in
DRB and DRCAB. For Experiment 2, we add the adaptive residual
learning into DRB and DRCAB, then the SSIM score reaches
0.9687. For Experiment 3, we only add the channel-wise attention
mechanism into DRCAB, and SSIM is improved from 0.9591 in
the baseline to 0.9628. This indicates that simply stacking dense
blocks in the encoder and the decoder cannot achieve optimal
performance for image dehazing. The performance would increase
with additional adaptive residual learning or channel-wise attention
mechanism. By using both components in Experiment 4, even
better performance with SSIM=0.9742 is obtained.

Based on the above discussion, we use the design of DRB and
DRCAB in Experiment 4 for testing the effects of the number of
DRCAB in the decoder. Because DRCAB uses the channel-wise
attention mechanism to extract useful information with a large
receptive field, it is applied at the end of the encoder and the
beginning of the decoder. Based on this design principle, in
Experiment 5, we use two DRCABs at the end of the encoder and
two DRCABs at the beginning of the decoder. In Experiments 6, 3
DRCABs are used in both the encoder and the decoder. Besides,
we also remove all the DRCABs in Experiment 7 to test the effect
of DRCAB. Comparing the results of Experiments 4, 5, 6 and 7,
we find that Experiment 4 which uses one DRCAB in both the
encoder and the decoder, achieves the best result.

3.2.3 Comparison of transmission map on testing data
set: Our synthetic testing data set is used to further evaluate the
estimated transmission maps. Since the ground truths of the
transmission map in the testing data set are available, we are able
to evaluate the results visually and quantitatively. Visual results of
the two samples in our testing data set are displayed in Figs. 9 and
10 with SSIM marked under each image. Besides, for clearly
examining the results, all the intensities of the pixels in the
transmission map are transformed to RGB values. From Figs. 9 and
10, we find that comparable methods such as DCP [11], WAPM
[19] and IASM [20] can estimate the transmission map with
structural details, but they also tend to generate erroneous
estimation. For example, the results of DCP proposed by He et al.
[11] displayed in Figs. 9b and 10b show that the buildings and
vehicles have similar colours as the sky region, since the DCP
views all the white objects as atmospheric light. IASM [20] and
WAPM [19] which predict the transmission map via luminance and
threshold-based segmentation respectively still cannot handle the
white object in the foreground (see the buildings in Fig. 10c and
vehicles in Fig. 10d). In contrast, the results from PPDN [26] and
our DRCAN in Figs. 9e, 10e and Figs. 9f, 10f are much closer to
the ground truths, due to the higher SSIM values marked under
these results. However, our results preserve more necessary details
and have highest SSIM values. The quantitative SSIM evaluated on
400 test images are tabulated in the second row of Table 1, firmly
demonstrating that our DRCAN achieves the best performance
with highest SSIM. It is also reasonable for DRCAB to perform
well because it assigns more computational resources on
informative channel-wise features by using DRCAB in the encoder
and the decoder.

3.3 Comparison of dehazing results on synthetic images

The visual dehazing results of two challenging samples are
displayed in Figs. 11a and d. As well, the corresponding ground

Fig. 19  Dehazing result of real Tian An Men image
(a) DCP [11], (b) IASM [19], (c) WAPM [20], (d) PPDN [26], (e) AODN [25], (f) Proposed work

 
Table 3 Quantitative SSIM for ablation study evaluated on the synthetic testing data set
Experiment index 1 2 3 4 5 6 7
Adaptive residual learning × √ × √ √ √ √
channel-wise attention mechanism × × √ √ √ √ √
number of DRCAB in encoder 1 1 1 1 2 3 0
number of DRCAB in decoder 1 1 1 1 2 3 0
SSIM 0.9541 0.9687 0.9628 0.9742 0.9654 0.9419 0.9517
Bold values indicate the best results.
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truths and zoomed-in details of regions enclosed in red rectangles
in clear images are shown in Figs. 11b, e and c, f. The dehazing
results of different algorithms are displayed in Figs. 12–15. From
Fig. 12a, we find that the results of DCP [11] suffer from severe
colour distortions, since DCP cannot handle the white objects. For
example, the sky colour in Fig. 12a has turned yellow. Besides, the
colour of sky regions in Fig. 14a are also darker than that of the
ground truth (see Fig. 11e). Although, zoomed-in details shown in
Fig. 13a have stronger contrast and better visual effect than our
result displayed in Fig. 13f, the colour distortions still exist. For
example, the roof in the left corner of Fig. 13a are much darker
than the ground truth shown in Fig. 11c. While, our zoomed-in
details (see Fig. 13f ) are close to the ground truth (see Fig. 11c).
The results by IASM [20] and WAPM [19] are either too dark or
too white. For example, the colours of the red roof in Figs. 13b and
c are pale and dark, respectively. This colour distortion arising
from transmission estimation errors cannot be avoided effectively
in the dehazing results, due to the adopted handcrafted prior. In
IASM [20], Ju et al. use a linear model to describe the transmission
map which causes inaccurate results. In WAPM [19], Yoon et al.
use a threshold based strategy to partition different regions covered
with varying scene lights without considering the spatial
correlation, this results in the misclassification of regions. On the
other hand, the dehazing results by AODN [25] still have some
haze residuals and colour distortions (see Figs. 12e and 14e).
Obvious residual haze and colour distortion can be observed in the
zoomed-in details in Figs. 13e and 15e. The dehazing results by
PPDN [26] are clearer than the above mentioned results. However,
upon detailed inspection, this strategy reveals over dehazed results,
e.g. over white sky regions in Figs. 12d and 14d. In contrast, our
results (Figs. 12f and 14f ) with less colour distortion are closest to
the ground truths (Figs. 11b and 11e). The PSNR/SSIM marked
under each image and the quantitative results tested on 400 test
images displayed in third row of Table 1 further demonstrate the
effectiveness of the proposed method.

In addition, for further testing the robustness of our method, we
compare our algorithm with several state of the art methods on the
outdoor images of SOTS, including the CNNs based methods, e.g.
DehazeNet [33], AODN [25], DCPDN [32], GFN [30], EPDN
[27], MSCNN [34], FAMED-Net [29], FPCNet [28],
GridDehazeNet [31] and the handcrafted priors based method, e.g.
DCP [11], NLP [14], CAP [12], BCCR [16], GRM [15] and MOF
[17]. The related quantitative results displayed in Table 2. From
Table 2, we find that GridDehazeNet [31] and FAMED-Net [29]
achieve the best and the second performance, respectively. Our
method ranks third. However, note that the GridDehazeNet consists
of a pre-processing module, a dehazing module and a post-
processing module for image dehazing. FAMED-Net [29] includes
encoders at three scales and a fusion module to fuse multi-scale
information. Hence GridDehazeNet and FAMED-Net have the first
and second competitive performance. In contrast, our model
removes haze with uneven illumination prior by DRCAN, which
neither adopts pre-processing operation, post-processing operation
or adopts multi-scale information fusion. Further, our method even
outperforms some complicated networks, e.g. EPDN, FPCNet,
DCPDN.

3.4 Evaluation on real-world images

To further investigate the generalisation ability of the proposed
method, we conduct visual comparisons on real-world images (see
Fig. 16). As displayed in Figs. 17–19, DCP [11] and WAPM [19]
fail to recover the real colour. For example, the sky regions in Figs.
18a and b are much darker than the real colour. IASM [20] and
AODN [25] not only darken the images, but also leave residual
haze in the results (see Figs. 17c, 18c, 19c and Figs. 17e, 18e and
19e). Although, the results by PPDN [26] are clearer than that of
other algorithms, it still leaves a small amount of residual haze in
the dehazing results, which leads to loss of detailed information,
e.g. the words on the Tian An Men in Fig. 19d cannot be
recognised. By comparison, our method removes haze with fine
details and realistic colour shifts (see Figs. 17f, 18f and 19f ).

3.5 Analysis of execution time

The run time of our algorithm is mainly the sum of two parts: the
first part is spent on estimating the transmission map by the
proposed DRCAN, which is discussed in Section 2.2. Since there
are only three DRBs, one DRCAB in the encoder and 3 de-
convolutional layers and 1 DRCAB in the decoder, the architecture
of DRCAN is simple and the network depth is shallow. The
average run time for a 512×512 testing image is around 0.2 s. The
second part is spent on calculating the scene lights by segmenting
the transmission map via fuzzy partition entropy and graph cuts,
also including the time spent on refining the scene lights with
regularisation optimisation. This part is discussed in Section 2.6.
For the fuzzy partition entropy operation, the iterative calculation
method [41, 42] used for searching the maximal fuzzy partition
entropy is performed by three separate sum operations with two
parameters. Hence, the run time is not influenced by the image size
and is around 0.2 s for each image. In additions, graph cuts is also
computationally efficient by using α–β swap operator [43] and the
run time on one image is about 3 s. Finally, the iterative scheme
[20, 44] for solving regularisation optimisation takes around 0.5 s.
Hence, the total run time for one image is around 3.9 s.

4 Conclusion
In this work, we proposed an image dehazing method with uneven
illumination prior by using a novel DRCAN. First, we proposed a
DRCAN for learning the mapping between a hazy image and a
transmission map. To be specific, the encoder is formed by the
proposed DRB which helps extract the hierarchical features with
increasing receptive fields. In addition, the symmetrical de-
convolutional layers are adopted to build the decoder. To enable the
decoder to be guided by meaningful information (e.g. the features
containing heavy haze information), the last DRB in the encoder
and first de-convolutional layers in the decoder are equipped with
the proposed DRCAB. Furthermore, to calculate the varying scene
lights under an uneven illumination prior, fuzzy partition entropy
combined with graph cuts is used for segmenting the transmission
map into different regions covered with different scene lights. This
segmentation strategy not only considers the fuzzy intensities in the
low-contrast transmission map but also takes the spatial correlation
into account. After calculating the scene lights in its corresponding
regions, a clear image can be obtained by the transmission map and
scene lights. Extensive experiments on synthetic images and real-
world images demonstrate promising performance for our image
dehazing method. We believe that our model can be applied not
only to image dehazing but also to other image restoration tasks,
e.g. image deraining and image deblurring. We will further
investigate the effect of the proposed model on various image
restoration tasks where the proposed DRCAB learns to capture the
most relevant information from the degraded images.
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6 Appendices
 
6.1 Appendix 1

The S -function is defined as

S(x) =

1 x ≤ u

1 − (x − u)2

(w − u)(v − u) u < x ≤ v

(x − w)2

(w − u)(w − v) v < x ≤ w

0 x > w

(24)

where u,v,w are the parameters determining the shape of S -
function.

The Z-function is the opposite of the S-function which can be
written as Z(x, u, v, w) = 1 − S(x, u, v, w) and defined as

Z(x) =

0 x ≤ u
(x − u)2

(w − u)(v − u) u < x ≤ v

1 − (x − w)2

(w − u)(w − v) v < x ≤ w

1 x > w

(25)

The M-function is derived from the S-function and the Z-
function

M(x) =
Z(x, u1, v1, w1) x ≤ w1

S(x, u2, v2, w2) x > w1 (26)

After substituting (24) and (25) into (26), the M-function can be
rewritten as

M(x) =

0 x ≤ u1

(x − u1)2

(w1 − u1)(v1 − u1) u1 < x ≤ v1

1 − (x − w)2

(w1 − u1)(w1 − v1) v1 < x ≤ w1

1 w1 < x ≤ u2

1 − (x − u2)2

(w2 − u2)(v2 − u2) u2 < x ≤ v2

(x2 − w2)2

(w2 − u2)(w2 − v2) v2 < x ≤ w2

0 x > w2

(27)
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where u1, v1, w1, u2, v2, w2 are parameters determining the shape of
the M-function, which need to satisfy the constraint that
0 ≤ u1 < v1 < w1 < u2 < v2 < w2 ≤ 255.

6.2 Appendix 2

For the multi-label problem, the goal is to find a labelling l which
assigns each pixel p a proper label lp. Hence, for obtaining the
optimal label assignment for close, medium and distant scene sets
in the transmission map, we seek the labelling l that minimises the
energy function of a multi-label graph cuts

T(l) = Tsmooth(l) + Tdata(l) (28)

where Tdata is defined as in (19) and Tsmooth is defined as in (20).
Labelling l can be viewed as a partition of pixels
l = {lp lp ∈ closescene, mediumscene, distantscene}.

Here, we adopt the α–β swap algorithm to solve a multi-label
graph cuts problem. Specifically, given a pair of labels α and β, a
move from a partition l to a new partition l̄  is called an α–β swap,
where the pixels labelled by α in l are now labelled by β in l̄  or
some pixels labelled by β in l are now labelled by α in l̄ . Hence,
the aim of the α–β swap algorithm is to find a new label l̄  which
can minimise (28) over all labellings within one α–β swap of l. The
key steps of the α–β swap algorithm from [43] are summarised in
Algorithm 1 (see Fig. 20.).

From Algorithm 1 (Fig. 20), we find that steps 2, 3 and 4 form a
cycle. In each cycle, the α–β swap algorithm performs an iteration
for every pair of labels. A cycle is successful when a better
labelling is found at any iteration. Otherwise, the algorithm stops
once the first unsuccessful cycle is obtained since there is no
further improvement.

Fig. 20  Algorithm 1: α–β swap
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