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Abstract

Federated Learning (FL) allows training Machine Learning (ML) models without

sharing private data, which is crucial for domains like finance and healthcare.

However, FL is vulnerable to inference and membership attacks. To enhance security,

Multi-Party Computation (MPC) are used, but they face challenges such as high

computational costs, memory requirements, and communication overhead, leading to

prolonged training times.

This thesis introduces a weighted federated learning approach using secret-sharing

scheme MPC, and accelerated by plain-text computation with Intel Software Guard

Extensions (SGX). We propose and evaluate two secure weighted FL computation

infrastructures, SGXDL and HybridSGXDL, for their efficiency, feasibility, and

practicality in Convolutional Neural Networks (CNNs).

Because of utilizing Intel SGX for plain-text computation, these infrastructures achieve

significant efficiency improvements, reducing training time by at least 5× compared

to Piranha(GPU-accelerated MPC platform). For moderate tasks, improvements can

reach 164×, and efficiency gains continue with largermodels. Intel SGX limit available
libraries to C standard libraries, consequently requiring MPC developers’ expertise

in both applied mathematics and C implementation. SGXDL and HybridSGXDL

demonstrate the practicality of securely training CNNs such as ResNet18 and VGG16,

allowing developers to access and use the models for secure training without extensive

mathematics expertise.
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Abstract

Federated Learning (FL) möjliggör träning av maskininlärningsmodeller (ML) utan

att dela privat data, vilket är avgörande för områden som finans och sjukvård. FL

är dock sårbart för inferens- och medlemskapsattacker. För att öka säkerheten

används Multi-Party Computation (MPC), men dessa står inför utmaningar som höga

beräkningskostnader, minneskrav och kommunikationsbelastning, vilket leder till

förlängda träningstider.

Denna avhandling introducerar en viktad federerad inlärningsmetodmed användning

av MPC baserat på en hemlighetsdelningsschema, accelererat genom beräkningar i

klartext med Intel Software Guard Extensions (SGX). Vi föreslår och utvärderar två

säkra viktade FL-beräkningsinfrastrukturer, SGXDL och HybridSGXDL, för deras

effektivitet, genomförbarhet och praktiska tillämpning i konvolutionella neurala

nätverk (CNN).

Genom att använda Intel SGX för klartextberäkningar uppnår dessa infrastrukturer

betydande effektivitetsförbättringar, vilket minskar träningstiden med minst 5×

jämfört med Piranha (GPU-accelererad MPC-plattform). För måttliga uppgifter

kan förbättringarna nå 164×, och effektivitetsvinsterna fortsätter med större

modeller. Intel SGX begränsar tillgängliga bibliotek till C-standardbibliotek, vilket

därmed kräver MPC-utvecklares expertis inom både tillämpad matematik och C-

implementering. SGXDL och HybridSGXDL demonstrerar praktikaliteten i att säkert

träna CNNs som ResNet18 och VGG16, vilket möjliggör för utvecklare att använda

modellerna för säker träning utan omfattande matematisk expertis.

Nyckelord

Federerad Inlärning, Intel SGX, Flerpartiberegningsprotokoll
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Chapter 1

Introduction

1.1 Background

The success of Machine Learning (ML) in artificial intelligence applications, such as

recommendation systems, image recognition, and natural language processing, has led

to a significant increase in the volume of available datasets. In the current landscape,

expansive dataset repositories and the pervasive influence of ML applications across

various domains—such as healthcare [84], autonomous vehicle systems [54], and

financial markets [57, 81]—pose considerable privacy threats when datasets are

disclosed. FL facilitates collaborative model training by transmitting the gradients of

local datasets, rather than rawdata, to a central server for updatingDeepLearning (DL)

model weights. This approach not only preserves data privacy but also distributes

computational load across decentralized devices.

Despite its promise, FL is vulnerable to gradient-related adversarial attacks, potentially

exposing sensitive information[10, 40, 102]. To mitigate these vulnerabilities, several

defense mechanisms have been proposed, including MPC, Differential Privacy (DP),

andTrustedExecutionEnvironments (TEEs). WhileMPCcanmitigate threats through

secret-sharing schemes without revealing the inputs of computations, it is burdened

by significant communication overhead and computational complexity, particularly

for non-linear operations such as activation functions in deep learning [48, 98].

The secure MPC-based training of large models can be up to 104× slower than

standard plain-text computation [98]. Other secure computation techniques, such as

Homomorphic Encryption (HE), provides varying degrees of security and privacy but

1



CHAPTER 1. INTRODUCTION

also suffer fromcomputational overhead, impeding their practical deployment for real-

world deep learning applications’ workloads.

Given the significant overhead associated with cryptographic computations, a crucial

question emerges: Is it possible to perform these computations in plain-text to

eliminate the overhead while still preserving security? This thesis seeks to address

this question by utilizing Intel SGX to enable secure plain-text computation, thereby

overcoming the efficiency and practicality challenges inherent in existing secure

computation methods.

1.1.1 Piranha: a secure GPU computing platform

Secure MPC training of large-scale ML models often requires extensive periods to

complete. To address this, Piranha [100] introduces a general-purpose solution to

accelerate MPC computation, enabling the training of realistic neural networks within

roughly one day with GPU assistance. However, the computation efficiency associated

with secret sharing is still significantly lower than that of plain-text computation.

Additionally, memory requirements increase rapidly as the number of computing

clients grows. This escalating memory demand and computational burden of MPC

pose significant challenges to its deployment in real-world applications.

Plain-text machine learning operates directly with floating-point arithmetic under

reasonable memory constraints, whereas MPC operates over integer types. Although

Piranha implements integer operations on GPUs for MPC, GPUs are inherently

optimized for accelerating floating-point computations, which are more suitable for

plain-text machine learning.

This research proposes and implements hardware security-based MPC protocols that

utilize secure plain-text floating-point computation schemes. This approach aligns

more naturally with plain-text machine learning computations and fully leverages

GPUs’ floating-point acceleration capabilities. The proposed hardware security-

based computing infrastructures, specifically SGXDL, enable secure deep learning

applications to be practically deployed in real-world scenarios without compromising

efficiency, regardless of the number of computing participants. By leveraging Intel

SGX for secure plain-text computation, this research aims to overcome the limitations

of existing MPC methods, enhancing both the practicality and scalability of privacy-

preserving machine learning.

2



CHAPTER 1. INTRODUCTION

1.2 Problems

Deploying and supporting real-world secureMulti-Party Computation (MPC)machine

learning applications pose overhead challenges. Traditional Federated Learning (FL)

is susceptible to security breaches, while MPC incurs substantial communication

overhead, particularly for non-linear operations. Our proposed SGXDL and

HybridSGXDL frameworks aim to address these issues by providing efficient and

secure solutions, leveraging Intel SGX for plain-text computation.

1.2.1 Privacy Challenges in Federated Learning

Although Federated Learning promotes a

privacy-aware framework, it remains vulnerable to inference attacks both from within

and outside the system, compromising data privacy and system integrity [63, 65,

75]. The gradients sent to the server during FL process can unintentionally reveal

sensitive information[36, 95, 101], allowing attackers to infer private data through

modified inputs. This presents the privacy risk in scenarios where malicious actors

intentionally misrepresent data. For instance, during adversarial CNNs training, if the

attacker intend to declare an image belonging to Alice as belonging to Eve, the victim

device may continuously contribute Alice’s information to correct the model, leading

to unintended data leakage. This underscores the critical need for advanced privacy-

preserving techniques in FL to prevent suchunauthorized access andprotect individual

user privacy. Techniques such as MPC, differential privacy(DP), and homomorphic

encryption(HE) are vital to enhancing the privacy and integrity of the FL ecosystem.

Effective privacy-preserving strategies are crucial to protect individual users’ data and

maintain the overall trustworthiness of the FL framework[10, 79, 113].

1.2.2 Overhead Challenges in Secure FL techniques

A lot of work have studied to integrate the encrypted privacy-preserving methods into

FL to enhance the privacy. However, HE and MPC are not applicable for large-scale

FL in real-world applications, because the encrypted computation without revealing

the insights of data incur heavy communication and computation overhead. While

DP provide a solution with reasonable overhead, it requires the aggregated value to

contain noise up to a certain magnitude at aggregation-based tasks, which is not

ideal for FL[63]. Additionally, DP is also facing the challenge of explainability,

3



CHAPTER 1. INTRODUCTION

trackability, accuracy drop and vulnerability to attacks, for example, complicating the

ability to monitor specific information such as fraudulent activities and adjust models

accordingly [19]. Thus, developing effective and secure FL solutions which address

these limitations is imperative.

1.2.3 Expanded Memory Requirements and Workload Growth
Challenges

Multi-Party Computation (MPC) protocols typically accommodate between one to

four participants. However, in real-world scenarios, deep learning applications can

involve more parties. As number of computing parties and the complexity of CNN

model increase, the memory requirements and computational workloads of shares

grow quickly. This escalation poses significant challenges to the feasibility of deploying

MPC protocols in practical, large-scale applications. The Piranha platform serves as a

notable example of these scalability challenges. During a 3-party setup for training

AlexNet on the MNIST dataset with a batch size of 300, the platform experienced a

memory overflow on a 24GB GPU. This scenario, despite being relatively modest tasks

for deep learning applications, underscores the substantial scalability issues faced by

current MPC protocols in managing large-scale operations.

To address the scalability challenges inherent in MPC, integrating Trusted Execution

Environments (TEEs) is crucial. TEEs can replace segments of the encrypted

computation workload with plain-text computations while preserving the security

benefits of MPC. This integration can significantly reduce computational and memory

overheads, making large-scale MPC deployments more feasible.

1.2.4 Non-linear Operation Overhead Challenge in MPC

Multi-Party Computation is an effective technique to bolster privacy and security in

FL, enables secure computation between multiple parties without disclosing inputs

and outputs, which inspire the research of applying MPC in FL[34]. However, MPC’s

encrypted computation methods incur significant communication overhead for non-

linear operations because ofmore data share exchanges[59]. This overhead can further

ruin processing speed due to network bandwidth constraints and synchronization,

causing GPUs to remain underutilized as they await required data tokens from other

devices. To improve the performance of MPC based FL in real-world scenarios

4



CHAPTER 1. INTRODUCTION

while maintaining security, optimizing non-linear operations in Convolutional Neural

Networks (CNNs) is the most important module in this thesis to address.

1.3 Methodology

1.3.1 Multi-Party Computation based Federated Learning

SecureMulti-Party Computation Protocols(SMPC/MPC) have emerged as a promising

technique to enhance security in FL[11, 31, 46, 47, 89, 110]. MPC enables

participants to perform joint computations and gain insights from data based on

secret shares without the decrypting process or revealing the raw data. Crucially,

the information each party holds appear random and meaningless without useful

information. To enhance this architecture, we aim to implement a MPC-basd

FL framework to reinforce security guarantees while significantly reducing the

computational overhead, by integratingTrustedExecutionEnvironments (TEEs). This

approach will streamline computations, ensuring efficient, secure processing without

compromising the confidentiality integral to MPC.

1.3.2 Trusted Execution Environments(TEEs) - Intel SGX

Despite the benefits ofMPC, it often suffers from significant communication overhead,

particularly with large datasets and complex machine learning models. Trusted

Execution Environments (TEEs), such as Intel SGX, offer a robust solution for

ensuring privacy-preserving execution of plain-text computations [16]. TEEs provide a

secure enclave for executing safety-critical operations and sensitive functions without

exposure to external entities[28]. Intel SGX enables physical isolation on the Central

ProcessingUnit (CPU) to securely process privacy data and codewithin an enclave[43].

The data and functions within the SGX enclave remain inaccessible to any external

entity including the server that holds the TEEs, ensuring that computations can be

performed securely and confidentially. By utilizing TEEs, it is feasible to replace the

computationally intensive overhead operations in MPC with plain-text computations,

maintaining accuracy and efficiency compared to other privacy-preserving techniques

such as Differential Privacy(DP).

5



CHAPTER 1. INTRODUCTION

1.4 Solutions

To address the significant overhead issues associated

with MPC in secure deep learning, we propose two secure computing infrastructures

SGXDL and HybridSGXDL. These infrastrctures facilitate the deployment of secure

and efficient deep learning applications among clients in real-world scenarios without

compromising accuracy. By balancing the trade-off between efficiency and security,

our approach aims to significantly reduce computational workload while maintaining

the security of the system. The core idea is to replace secret-sharing computation with

plain-text computation into Intel SGX enclaves, eliminating the need for encrypted

computation and reducing computational workload.

While Intel SGX provides a secure environment for computation, it is not sufficient

for a fully secure collaborative computing framework. Public key authentication is

required at initialization to ensure data security outside of Intel SGX and during the

communication process.

1.4.1 Intel-SGX Plain-text Secure Deep Learning(SGXDL)

The size of SGX enclaves has significantly increased from the previous 257MB to 64GB

and beyond. This expansion allows current server enclaves to accommodate complete

large deep learning models and calculations, effectively reducing communication

overhead and operation complexity in Multi-Party Computation (MPC). The primary

idea of SGXDL is to perform all computation operations within the enclaves. Intel-

SGX Plain-text Secure Deep Learning (SGXDL) infrastructure conducts the entire

plain-text training process inside the enclave. This approach eliminates the need for

communication and Outside Calls (OCalls) during training, therebymitigating the risk

of side-channel attacks.

1.4.2 Hybrid Intel SGX-GPU Secure Deep
Learning(HybridSGXDL)

While the proposed SGXDL infrastructure is effective and secure, performing the

entire training process within the enclave on a CPU limits the use of GPU acceleration.

Inspired by Piranha, which utilizes GPUs to accelerate MPC machine learning, we

propose a heterogeneous Intel SGX-GPU computing infrastructure to further improve

6



CHAPTER 1. INTRODUCTION

the efficiency of secure computing by leveraging GPUs. This infrastructure distributes

computation workloads between Intel SGX and local GPUs.

We introduce and implement the privacy-preserving infrastructure Hybrid Intel

SGX-GPU Secure Deep Learning Framework (HybridSGXDL) to accelerate secure

computing by using GPUs. This framework incorporates efficient secure deep learning

schemes where data samples are distributed among parties using a secret-sharing

scheme[5] and GPUs to accelerate the computations.

In HybridSGXDL, computing operations are divided into linear and non-linear

modules. Linear operations, which are less computationally intensive for MPC (e.g.,

addition andmultiplication), are executed locally on clients’ GPUs. Intel SGX serves as

a trusted third party to integrate the results of these secret-sharing linear computations

from edge parties ,and compute non-linear operations such as Rectified linear unit

(ReLU) and MaxPool in plain-text within Intel SGX.

The secret-sharing non-linear intermediate results are then returned from Intel SGX

to the edge devices for the next set of linear operations in a recursive manner.

The backward propagation process also follows the same non-linear and linear

computation separation rules, the backward linear computation results would be

integrated in the enclave. The updated gradients are then separated into random

shares and distributed back to the corresponding devices, ensuring the integrity and

privacy of the data throughout the process.

Table 1.4.1: Target Efficiency Benchmark Analysis

Computing Schemes Platforms

Proposed secure computing infrastructures SGXDL, HybridSGXDL

Cutting edge secure computation platform Piranha

Plain-text computation CPU, GPU

1.5 Purpose

The purposes of the research are to:

• Implement efficient and secure deep

learning infrastructures that replace encrypted computation with secure plain-

text computation in Intel SGX(HybridSGXDL and SGXDL).

7



CHAPTER 1. INTRODUCTION

• Explore the feasibility of conducting the entire training process of plain-text deep

learning models within an enclave(SGXDL).

• Design a scheme that separates linear operations on local devices’ GPUs using

a secret-sharing approach, while performing non-linear operations in Trusted

Execution Environments (TEEs).

• Implement secure and efficient deep learning platforms capable of running

LeNet, AlexNet, ResNet18, and VGG16. These platforms will be implemented

in pure C style, making them compatible with most types of servers.

1.6 Hypothesis, Environment and Threat Model

1.6.1 Hypothesis

• The number of computing parties n ∈ N is not theoretically limited and can

be 1,2,3,4,5,6,7....etc in SGXDL. For HybridSGXDL, the number of participating

parties implemented in the thesis is 3.

• All information is in secret-sharing format outside the Intel SGX enclave.

• There will be only one server holding the SGX, and other parties will send the

secret shares to the SGX server. SGX is the only trusted entity, and all parties

including the server are assumed to be semi-honest.

• There will be only communications between the SGX server and clients, with no

communication between clients in SGXDL.

• In HybridSGXDL there are communications among servers and clients.

• Network setting: LAN 2GB/s with 2ms latency

• The federated learning (FL) in the thesis will apply the weighted federated

learning format as described in [114].

8



CHAPTER 1. INTRODUCTION

1.6.2 Environment

Development Environment

Operating System: Ubuntu 22.04

Default Maximum Enclave Page Cache (EPC) Size for Intel SGX:64 GB

GPU: Nvidia RTX A5000, memory of 24GB

Architecture: x86 64

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 46 bits physical, 57 bits virtual

Byte Order: Little Endian

CPU(s): 144

On-line CPU(s) list: 0-143

Vendor ID: GenuineIntel

Model name: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz

CPU family: 6

Model: 106

Thread(s) per core: 2

Core(s) per socket: 36

Socket(s): 2

Stepping: 6

CPU max MHz: 3500,0000

CPU min MHz: 800,0000

BogoMIPS: 4800.00

Build tools

Intel® SGX Linux 2.9 release

CUDA 11.7

GCC 13.1

C++ 17

9



CHAPTER 1. INTRODUCTION

1.6.3 Threat Model

The thesis considers a semi-honest threat model, where attackers may corrupt parties

but still follow the protocol. In other words, the corrupted parties participate in

Federated Learning (FL) honestly but attempt to extract as much information as

possible from the messages they receive from other parties and the SGX (i.e., they

are honest-but-curious). The semi-honest adversaries may try to learn information

from the honest parties and exploit the established communication channels of the

protocol.

In SGXDL, the communication is exclusively between the server’s SGX and the clients .

The key point is to establish a secure channel between the SGXand the clients, ensuring

that the server party, which mainly handles the share messages, cannot learn or

retrieve the information exchanged. And forHybridSGXDL, there are communications

among clients and server, additional secure channels are required to protect the

communication among clients. For more rigorous scenarios involving malicious

environments, additional monitoring and detection mechanisms are required, but

these are beyond the scope of this thesis.

SGXDL security targets

The purpose of SGXDL is to safeguard the model structures, parameters, and raw

data, including intermediate products, during the training process. To extract useful

information by integrating all shares, adversaries would need to simultaneously

compromise all participating parties. Consequently, as the number of participating

computing parties increases, the overall security is strengthened.

HybridSGXDL security targets

The primary security objective of HybridSGXDL is to ensure the confidentiality of

raw data and model parameters across all participating parties, effectively preventing

the server from accessing any plaintext information. This is in contrast to traditional

federated learning models, where the server typically receives gradient values from all

participants.

Even in the most adverse scenarios—such as when secure communication channels

are entirely compromised and the server is capable of reconstructing the shares—only

intermediate results might be exposed. The raw data remains protected, as these

10
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intermediate results are composite products of both addition andmultiplication during

local convolution, making it infeasible to reconstruct the original raw data. This level

of security is considered sufficient to meet the objectives of HybridSGXDL.

Figure 1.6.1: Communication Connection Model(SGXDL)

11



Chapter 2

Theoretical Background

This chapter provides a comprehensive overview of federated learning, focusing on

weighted federated learning (wFL) based on secret-sharing schemes used in this thesis.

It addresses the security challenges in traditional federated learning. Furthermore,

it details the deep learning operations used in the thesis such as convolution and

ReLU, essential for the deployment within Intel SGX using limited C standard

libraries. Understanding these operations is crucial for grasping how secret-sharing

computations for convolution, accelerated by GPUs on local devices, can be integrated

into the HybridSGXDL framework.

Intel SGX functionalities are explored, including interface design and implementation.

In conventional federated learning, the server can potentially perform inference

attacks using received gradients. Despite the fact that data is protected through secret

random shares in this thesis, there remains a risk of the server accessing all shares.

To mitigate this risk, public key authentication is implemented to create a secure

communication channel between SGX and client parties, ensuring data integrity and

secure communication.

2.1 Secret-Sharing based MPC

Secret sharing scheme is a method to safely share data between numerous gatherings,

provides superior performance for arithmetic operations such as matrix addition

and multiplication over other cryptographic tools, and has been extensively used for

privacy-preserving CNNs’ inference and training[12, 13, 97].

12
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2.1.1 Additive Secret Sharing

Additive secret sharing(ASS) and shamir secret sharing[83] are two widely used

schemes. Shamir[83] proposed a (n,t)-threshold scheme based polynomials for the

secret share that the raw data is divided into n shares, and (1) any t shares are able to

retrieve the information (2) any t-1 shares reveal no useful information. And ASS is a

(n,n)-threshold secret sharing scheme that raw data is divided into n shares, and can

only be retrieved with n shares. In ASS, the raw data x will be randomly divided into

[x0, x1, x2, ...xn−1] on a finite field such that
n−1∑
i=0

xi = x. Many ASS-basedMPC protocols

are widely used for privacy-preserving computation in recent days[7, 8, 20, 35, 58,

107]. This thesis defines ASS-based MPC learning frameworks over the real number

field R for floating-point arithmetic operations.

2.1.2 Multi-Party Computation(MPC)

The security community has a long accepted common sense that any security systems

are born with their corresponding attack surface, it is nearly impossible to design a

fully secure complex system[25], adversarieswill be able to penetrate and steathily take

control over some of the network nodes. To enhance security, it is crucial to minimize

the attack surface and maximize the cost of attacks.

MPC is introduced by Andrew Yao[108] in 1982. Yao gave a precise formulation for

multi party computation problem(e.g. Twomillinaireswish knowwho is richerwithout

disclosing the information of wealth values). The problem can bemodified asm parties

wish to jointly compute a function f(x0, x1, ...xm−1) where xi is the ith party’s private

input of integers with bounded range. Several well-known MPC protocols have been

developed, including Yao’s Garbled Circuits, GMW [33, 35], BGW [6], BMR [4], and

GESS [50].

MPC enhances privacy in machine learning by allowing joint data processing without

exposing individual inputs. However, the significant communication and computation

overhead makes it impractical for large-scale data and models. Hybrid solutions

combining MPC with homomorphic encryption (HE) have been proposed [30, 80].

To improve efficiency, trusted execution environments (TEEs) like Intel SGX are

used to assist MPC, balancing encrypted computation and hardware security [21,

104]. Recognizing the high cost of nonlinear computations in MPC, plain-text

arithmetic nonlinear operations are performed in SGX for HybridSGXDL to reduce

13
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overhead.

2.2 Federated Learning

2.2.1 History of Secret-Sharing Federated Learning

The success of convolutional deep learning [55], advancements in attention

mechanisms [96], and the emergence of large language models like ChatGPT [1] have

highlighted the potential of deep learning in artificial intelligence. The availability

of big data has accelerated the adoption of deep learning in various fields such as

healthcare, finance, autonomous systems, and e-commerce. However, individual

institutions often lack sufficient data, necessitating collaborative trainingwith datasets

from other parties. Directly sharing and integrating datasets poses significant privacy

risks.

Federated Learning (FL), introduced by Google in 2016 [70], addresses these privacy

concerns by allowing clients to train models locally and send model updates to a

server for integration. However, FL frameworks are vulnerable to gradient-based

attacks [64]. Consequently, secret-sharing-based Federated Learning (FL) emerged to

enhance security by distributing data in secret shares, ensuring data remains encrypted

and random, revealing very least information unless all shares are integrated [27].

Thismakes it significantly challenging for attackers, as theymust compromisemultiple

parties simultaneously to obtain useful information.

There is a substantial body of work focusing on using secret-sharing schemes to assist

federated learning. Bonawitz et al. [9] presented a privacy-preserving MPC protocol

using Shamir’s t-out-of-n Secret Sharing [83] for secure gradient aggregation in FL.

Zhang et al. [111] combined threshold secret sharing with homomorphic encryption

(HE) to address similar challenges. Y. Dong et al. [22] applied secret sharing for

distributed learning. Jinhyun So et al. [88] proposed Turbo, which masks models

at local clients with randomness using additive secret-sharing schemes, canceling out

noise during aggregation. Secret-sharing is widely used in FL [42, 61, 76, 85, 87,

106].

Typically, centralized traditional FL trusts the server is honest to receive everything.

However, for stronger security, this thesis assumes a semi-honest threat model where

the server is also semi-honest and can bemonitored by an attacker capable of observing

14



CHAPTER 2. THEORETICAL BACKGROUND

its behavior. In such cases, the Intel SGX hardware enclave ensures that all parties,

including the server, cannot access the code and data within it. Even if an attacker

alters the server’s behavior and introduces disturbances, the FL performance may be

affected, but the information accessible to the attacker remains unavailable due to the

secure channel. Intel SGX provides strong protection against adversaries.

2.2.2 Secure techniques for Federated Learning

Homomorhpic Encryption (HE) [3, 61]allows FL to execute the gradients

aggregation over cipher-text on server without decrypting or revealing information

to the server in advance[15, 26, 38, 60, 109], which provides a strong guarantee for

data privacy. However, HE supports a limited number of arithmetic operations and

incurs substantial computational overhead due to complex cryptographic operations

[77]. Encryption and decryption on local clients can consume up to 80% of training

time in local plain-text machine learning model updates [109].

Local Differential Privacy (LDP) adds noise to local datasets, protecting

individual data privacy [24, 49]. However, LDP introduces uncertainty, potentially

reducing accuracy, thus necessitating a balance between privacy and accuracy

[75].

Multi-Party Computation (MPC) protocols provide

strong security for decentralized FL by distributing different random shares to clients,

revealing information only when a threshold number of shares are integrated, thus

requiring an attacker to compromise multiple parties simultaneously. However, MPC

incurs significant communication and computation overhead, particularly for non-

linear computations like Rectified Linear Unit (ReLU) and MaxPool, which involve

comparisons and conversions between arithmetic and binary secret sharing [32, 97].

ReLU latency can be 10,000 times slower than convolution operations [32].

Intel SGX is an encrypted area on the CPU that protects the code and data within

the enclave from external access [14, 17, 71, 72]. Introduced in 2015, Intel SGX allows

running code and storing data securely on an untrusted device [17]. It provides the

option of secure floating-point plain-text computation without accuracy loss, thereby

eliminating the overhead associated with encrypted computation.
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2.2.3 Data Split in Federated Learning

Classical Federated Learning (FL) frameworks are typically categorized as horizontal,

vertical, and transfer learning, based on how datasets are split. In vertical FL, the

dataset is split by features with the same objects, while in horizontal FL, the dataset is

split by objects with the same feature space. In this thesis, data is distributed in secret

shares, and the corresponding federated learning approach is weighted federated

learning (wFL) [114], which will be introduced in the following section.

Wagh et al. [106] have demonstrated that secret-sharing schemes offer the highest

efficiency in secure deep learning scenarios. When individual clients have stringent

privacy requirements, theymay be reluctant to expose personal data to any institution,

complicating data generation and training processes. Via secret-sharing, access to

private data for model training or inference can be certified and agreed by individual

client to solve the concern. For instance, if Alice wants to take a genetic disease test

and investigate the results herself, she can send her data in three secret-sharing values

to three independent institutions that have databases for DNA diagnosis [23].

2.2.4 Weighted Federated Learning

Zhu et al. [114] proposed a weighted federated learning (wFL) scheme that utilizes

secret sharing to split private data into random shares. Building on this approach,

this thesis applies the wFL to private data to meet higher privacy demands. This

secret-sharing MPC-based wFL method has the potential to unlock a wide range of

machine learning applications that were previously inaccessible due to data privacy

concerns.

Procedure of weighted federated learning

Consider a 3-party wFL scenarios with three MPC parties: P0, P1, P2, two private data

x and y. In Zhu’s work x and y are defined in a finite integer field Z∗
p(where p is a

suitable large prime number e.g. |p| = 512). State-of-art secret sharing schemes are

also defined on finite fields and rings of integers to improve the security that attackers

can not learn information from the magnitude of shares.

Since this thesis implements plain-text floating-point computation with the assistance

of Intel SGX, it focuses on plain-text computation rather than cryptographic
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computation. The secret-sharing scheme is employed purely for security purposes.

Here, x and y are generated in a floating arithmetic field such that x is divided into 3

secret shares: x0, x1, x2 ∈ R, y is divided into 3 secret shares: y0, y1, y2 ∈ R. We do not

set a bounded range in theory because such bounds can lead to information leakage.

For example, if x0, x1, x2 ∈ (−100, 100), x0 = −56, x1 = −43, it can be inferred that

x < 1. Applying state-of-the-art cryptographic integer computation would involve

overhead of conversions between integers and floating-point numbers. Therefore, a

real number secret-sharing scheme is proposed for secure plain-text computation in

this thesis.

K. Tjell et al. [94] introduced a real number secret-sharing scheme leveragingGaussian

distribution, bypassing the need for integer shares and modular arithmetic, thus

facilitating direct arithmetic computation on shares. However, Tjell’s work is based on

(n,t)-threshold Shamir secret-sharing, where higher t implies more security but less

reliability. In contrast, this thesis uses (n,n)-threshold additive secret sharing. In the

following context, we address potential information leakage in real number additive

secret-sharing.

Assume there is a secure channel between Alice and the MPC servers, implemented

under the standard Public Key Infrastructure (PKI) assumption [2], ensuring that the

secret shares are securely distributed during initialization.

Real number (n,n)-threshold additive secret sharing In Convolutional

Neural Networks(CNNs), the fundamental arithmetic operations are addition and

multiplication, with no division involved. Non-linear operations, such as activation

functions, are executed in plain-text within the enclave. Thus, non-linear operations

are not discussed in the context of secret sharing schemes in the following modules.

The values of x0, x1, x2, y0, y1, y2 are set as:

• Select random numbers x0, x1, y0, y1 ∈ Rwhere each is Gaussian distributed with

mean value zero. Such that x0 ∼ N (0, σ2
x0
), x1 ∼ N (0, σ2

x1
), y0 ∼ N (0, σ2

y0
), y1 ∼

N (0, σ2
y1
).

• x2 = x− x0 − x1, y2 = y − y0 − y1.

The shares of x are distributed as follows in HybridSGXDL:

• P0 holds (x0, x2), (y0, y2).
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• P1 holds (x0, x1), (y0, y1).

• P2 holds (x1, x2), (y1, y2).

Here, we describe the shares distribution in HybridSGXDL(In SGXDL, each share is

distributed to one of the MPC parties).

Addition of x and y

• P0 make the computation z0 = x0 + y0.

• P1 make the computation z1 = x1 + y1

• P2 make the computation z2 = x2 + y2

• Finally, z0, z1 and z2 can be sent to SGX to get the result: z0 + z1 + z2 = x + y =

(x0 + x1 + x2) + (y0 + y1 + y2).

Multiplication of x and y

• P0 make the computation z0 = x0 ∗ y0 + x0 ∗ y2 + x2 ∗ y0.

• P1 make the computation z1 = x1 ∗ y1 + x1 ∗ y0 + x0 ∗ y1

• P2 make the computation z2 = x2 ∗ y2 + x2 ∗ y1 + x1 ∗ y2

• Finally, z0, z1, and z2 can be sent to SGX to get the result: z0 + z1 + z2 = x ∗ y =

(x0 + x1 + x2) ∗ (y0 + y1 + y2).

In the worst-case scenario where an attacker fully compromises the secure channels,

they might be able to observe z0, z1 and z2. And if z0 + z1 + z2 = 0 = x ∗ y holds, then
attacker could deduce x or y is 0. However, in the thesis, such leakage is considered

to pose no significant risk because the intermediate products of HybridSGXDL

exchanged during communication are not the result of singlemultiplication or addition

operations. Instead, they are composite results of a convolution process, which

inherently involves both multiplication and addition. Although there is a risk that

information about these intermediate products could be exposed during training once

the secure channels were compromised, it remains insufficient for reconstructing

the original raw data involved in the computation. The primary goal of the secure

computing infrastructure outlined in the thesis is to protect this raw data from being

compromised by external parties or adversaries.s.
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2.2.5 Privacy analysis for real secret-sharing in SGXDL

In SGXDL, data shares are generated in the same way in Section 2.2.4. However, the

data distribution would be different that each party only holds one share of the one

data, e.g. for x:

• P0 holds x0.

• P1 holds x1.

• P2 holds x2.

And send the shares secretly to the SGX directly which will handle all plain-text

computation. In this section, we analyze the privacy of the proposed real number secret

sharing when each party only holds one share. Wewill demonstrate later that the party

Pi can learn very limited information leakage of data x from the holding share xi.

Combining all three shares would be possible to reconstruct x, a set of fewer than 3

shares should reveal very little information, we formally state this information leakage

by using the information theoretical measure called mutual information[93]. Mutual

information is a measure that quantifies the amount of information one random

variable provides about another, in terms of entropy. It essentially indicates how

much the knowledge of one variable reduces the uncertainty of another. If the mutual

information between two random variables is zero, it signifies that the variables are

independent.

In computer system real numbers can only be represented by using a finite number of

bits, typically according to the IEEE 754 standard. This means numbers are stored in a

format that approximates real values, leading to rounding errors. Such floating-point

errors would be discussed later.

I(X;Y ) = h(X)− h(X|Y ) (2.1)

Mutual information I(X|Y )measures the information thatX and Y share, if I(X|Y ) =

0 then X does not give any information about Y which means there is no information

leakage in theory. h(X) is the entropy ofX and h(X|Y ) is the conditional entropy ofX

when Y is known.

Consider themutual information I(X;X0)betweenX andX0, where x is a certain value
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of variableX, x0 ofX0.

I(X;X0) = h(X0)− h(X0|X)

= h(X0)− h(X0) = 0
(2.2)

X0 is a Gaussian distribution independent fromX such that h(X0|X) = h(X0), we can

infer that I(X;X1) = 0 in the same way:

I(X;X1) = h(X1)− h(X1|X)

= h(X1)− h(X1) = 0
(2.3)

Consider the mutual information I(X;X2) between x ∈ X and x2 ∈ X2. Assume the

variance of input data x is σx.

I(X;X2) = h(X2)− h(X2|X)

= h(X − (X0 +X1))− h(X −X0 −X1|X)

= h(X −X0 −X1)−
∫
R

p(x)h(X −X0 −X1|X = x)

= h(X −X0 −X1)−
∫
R

p(x)h(N (x, σ2
x0

+ σ2
x1
))

≤ 1

2
log(2πe(σ2

x + σ2
x0

+ σ2
x1
))− 1

2
log(2πe(σ2

x0
+ σ2

x1
))

=
1

2
log(1 +

σ2
x

σ2
x0

+ σ2
x1

)

(2.4)

WhereX is independent of −(X0 +X1), the variance ofX − (X0 +X1) is

σ2
x + (σ2

x0
+ σ2

x1
) (2.5)

We can conclude that there is no information leakage for x0 and x1, and an upper

bound(Equation2.4) for x2’s information leakage. Given that the variance of dataset σ2
x

is a constant number, when the variance of x0 and x1 tends to infinity, the information

leakage of x2 tends to 0, we can select reasonable variance for Gaussian distribution

that x2 would not leak too much information.

In practical scenarios,before any information leakage occurs, the generation schedule

of x0, x1, x2 is unknown that x0, x2 could also be the Gaussian distribution random

numbers, the attacker must identify which share deviates Gaussian distribution could

only potentially leak information. The data share separation, determined individually
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by each client, can vary randomly for each data sample. For example, for one data

sample the non-Gaussian component can be x2, while in another, it could be x0, this

make the cost of guessing the non-Gaussian component expensive for the adversary.

Even if the adversary guess the non-Gaussian component correctly, the shares held

by parties are protected under the secure channels, and there is a information leakage

upper bound as shown in Equation 2.4, which can approach 0 with suitable variance

selection(σ2
x0
and σ2

x1
). This randomness of the generation schedule significantly

increases the difficulty and cost for the adversary in guessing the non-Gaussian

component.

Floating point errors Computing systems are inherently discrete, with a finite

number of floating-point numbers available. For instance, in a 32-bit floating-point

data type, there are only 232 available values, in contrast to the infinity of real

numbers. Consequently, computers cannot generate a true Gaussian distribution;

they can only approximate the Gaussian random number generation process. This

discrepancy between theoretical models and practical implementation can lead to

deviations in information leakage estimation. These deviations are measurable and

can be considered reasonable. I(X;X0) and I(X;X1) accounting for the floating point

error remain 0, becauseX,X0 andX1 are independent. For themutual information for

I(X;X2), where floating-point rounding and tailing errorsmight play a role, the impact

can be more nuanced, one could generate samples and estimate the empirical entropy

using a Monte Carlo simulation[74]. This approach would allow for a more detailed

analysis of how these errors influencemutual information. However, this investigation

is beyond the scope of the current thesis.

Most methods used for generating Gaussian distributions, such as the Box-Muller

transform or the Ziggurat algorithm[67, 92], rely on fundamental properties like the

Central Limit Theorem. While floating-point errors can slightly distort the output, the

overall distribution stillmaintains its Gaussian characteristics (i.e., it is still symmetric,

bell-shaped, and centered around a mean). Floating-point errors can approach zero

with very high precision computer system.

In this thesis, the primary focus is on the efficiency of securing computing

infrastructures using Intel SGX. Consequently, we do not delve into the effects of

floating-point system errors on mutual information. Future work could explore this

area, providing a more comprehensive understanding of how these errors impact
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mutual information in contexts where precision is critical.

Table 2.2.1: Proposed SGXDL secure deep learning

Secure SGXDL weighted Federated Learning

1) Data Split: m-random secret shares of one sample distributed tom parties
P0, P1, ...Pm−1. P0 is the only server equipped Intel SGX.

2) Local Computation: The SGXDL CNNs model is securely stored within
the Intel SGX enclave and remains within the enclave throughout the entire
inference and training process.

3) SGX Aggregation: The shares owned by each party locally are sent to SGX
secretly. SGX integrate the shares and complete the deep learning training
in enclave.

2.2.6 Privacy analysis for real secret-sharing in
HybridSGXDL

In HybridSGXDL, each party holds 2 shares that, Pi can learn very limited information

leakage of x from its holding shares. Shares for each data sample x are generated in

the same way as shown in Section 2.2.4

Assume the shares distribution condition is(the same in Section 2.2.4):

• P0 holds (x0, x2).

• P1 holds (x0, x1).

• P2 holds (x1, x2).

The information leakage are defined in the same way of mutual information in Section

2.2.5.

I(X;X0, X1) is information of random variableX that P1 can learn from knownX0 and

X1. SinceX0 andX1 are the Gaussian distributions independent fromX, so themutual

information is zero:

I(X;X0, X1) = 0 (2.6)

I(X;X0, X2) is information of random variableX that P0 can learn from knownX0 and
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X2. X0 is independent fromX, and due to Equation 2.4 such that:

I(X;X0, X2) = I(X;X2)

≤ 1

2
log(1 +

σ2
x

σ2
x0

+ σ2
x1

)
(2.7)

I(X;X1, X2) is information of random variableX that P2 can learn from knownX1 and

X2. X1 is independent fromX, and due to Equation 2.4 such that:

I(X;X1, X2) = I(X;X2)

≤ 1

2
log(1 +

σ2
x

σ2
x0

+ σ2
x1

)
(2.8)

There are information leakage upper bound for P0 and P2, with reasonable selection

of large enough σx0 and σx1 such information leakage can approach 0. The entropy

errors analysis of mutual information estimation considering the discrete fields and

floating point errors in computer system, are the same with the analysis in Section

2.2.5 because

I(X;X0, X1) = 0 (2.9)

I(X;X0, X2) = I(X;X2) (2.10)

I(X;X1, X2) = I(X;X2) (2.11)

2.3 Deep Learning

In this chapter, we introduce the history of deep learning, specifically focusing

on Convolutional Neural Networks (CNNs). We then delve into the detailed

implementation of deep learning models for the SGXDL and HybridSGXDL

frameworks. Given the absence of existing CNNs C projects suitable for Intel SGX

computation, we undertook the significant task of manually writing the code using

standard C libraries, involving extensive manual work and mathematical induction.

This chapter aims to highlight the implementation details essential for reproducing

the results and understanding the code presented in the Appendix of this thesis.
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Table 2.2.2: Proposed HybridSGXDL secure FL

Secure HybridSGXDL weighted Federated Learning

1) Data Split: m random secret shares of one sample are distributed to m
Parties P0, P1, ...Pm−1. P0 is the only server owning Intel SGX.

2) Local Computation: Each party generates random shares of the initialized
parameters of Convolutional Neural Networks (CNNs) locally, following
a Gaussian distribution. The parties then perform linear convolution
operations using these weight shares and data shares, with computations
accelerated by GPUs.

3) SGX Aggregation: Local computations, performed using a secret-sharing
scheme, are securely transmitted to the SGX enclave. Within the SGX, these
shares are integrated and converted back into plain text. The HybridSGXDL
framework subsequently performs non-linear computations on this plaintext
data and returns the results in the form of secret shares to the participating
parties. This iterative process continues until a complete round of model
forward and backward computation is completed.

2.3.1 Overview of Deep Learning

The idea of artificial neurons was introduced byWarrenMcCulloch andWalter Pitts in

1943, based on electrical circuits[68]. Since then, many researchers have advanced

the field of neural networks, including Frank Rosenblatt, who developed practical

applications like the Perceptron[82]. Research on theoretical aspects, including the

backpropagation (invented in the 1970s and popularized in the 1980s)[103], enabled

the training of multi-layer neural networks[91].

Figure 2.3.1: Simple Neural Network Structure
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During the 1990s and early 2000s, AI experienced a ”winter” period due to data

scarcity, overfitting, gradient vanishing in deeper layers, and limited computational

power. However, from 2015 onwards, the availability of GPUs[66] and large datasets

facilitated more practical applications, leading to significant breakthroughs in deep

learning structures.

One of the important structures that improved the efficiency and normalization

ability of neural networks is the convolutional layer, proposed by LeCun et al.[55]

and successfully applied in LeNet. The convolutional layer became a fundamental

component of modern deep learning, contributing to major successes in image

recognition competitions, such as AlexNet [51], which won the ImageNet Competition

in 2012.

Deep learning has developed rapidly, and the appearances of advanced techniques

like ResNet[39], DenseNet[41], and Transformer[96] models brought significant

breakthroughs in DL performance. Especially Transformer advancements have

enabled multi-modal applications and impressive applications in natural language

processing(NLP) like ChatGPT[1]. Today, deep learning is recognized as one of the

most powerful artificial intelligence paradigms, driving a wide range of applications in

healthcare, finance, customer service, autonomous systems, and more.

2.3.2 Training phase of Deep Learning

Convolution Neural Networks (CNNs) involve a series of repeated operations,

such as convolutions, followed by non-linear operations, including ReLU (Rectified

Linear Unit) activations and MaxPooling. The training phase in deep learning is

computationally intensive, requiring the model to process and learn all the samples

in the large datasets comprehensively, identify the optimal optimization extreme for

model parameters’ values. We implemented the pure C-style deep learning models

based on Intel SGX’s standard C libraries, and the learning rate sets to fix the vanish

gradients can see Appendix A.2.

2.3.3 Linear

The addition and multiplication computations are linear operations. In the context of

Convolutional Neural Networks (CNNs), these operations are equivalent to the matrix

multiplication and accumulation processes.
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2D Convolution

Figure 2.3.2: Convolution

Forward function, the convolution Conv(w, x) is:

Conv[i1, i2, ..., iD, cout] =

Cin∑
cin=1

K1∑
k1=1

K2∑
k2=1

...

KD∑
kD=1

w[k1, k2, ..., kD, cin, cout]·x[i1−k1, ..., iD−kD, cin]

(2.12)

• x[i1, i2, . . . , iD, cin] is the element of the input tensor x at channel cin, located at

position (i1, i2, . . . , iD).

• w[k1, k2, . . . , kD, cin, cout] is the weight of the convolution kernel w at position

(k1, k2, . . . , kD), which connects the input channel cin and the output channel cout.

• D is the number of dimensions of the input tensor (e.g., 2D, 3D, 4D, etc.),

• K1, K2, . . . , KD are the sizes of the convolution kernel along each dimension.

• Cin is the number of input channels (e.g., 3 channels for an RGB image), and Cout

is the number of output channels.

Assume the input matrix xC×I×I ∈ R, the output yO×N×N ∈ R, and a weight

wC×O×M×M ∈ R. The Stride S = 1, Padding P = 0. C is the channels magnitude

of input matrix x, and O is the channels magnitude of output matrix y. The weights w

are the convolution kernels of theCNN. Padding is a technique that adds empty borders

to the input image to prevent significant reduction in the output size. The stride is a

parameter that specifies the number of pixels by which the filter matrix moves across

the input matrix during the convolution operation.

N =
I −M + 2 ∗ P

S
+ 1 (2.13)
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N is the width and height of the output matrix y

y = Conv(w, x)

y(o, i, j) =
C−1∑
c=0

M−1∑
p1,p2=0

w(c, o, p1, p2) ∗ x(c, o, i+ p1, j + p2)
(2.14)

Backward function. Assume the loss function L. Loss functions in deep learning are

used tomeasure howwell a neural networkmodel performs. L is the error between the

final output of a CNNs model and given expected output value. The goal of training is

to minimize the value of the loss function during the back propagation step in order

to make the neural network better. While L in this thesis is the softmax function

[44], which is effective for multi-class classification problems (details provided in

Appendix B.1), the gradient update equations(Equation2.15, 2.16) apply universally

to any loss function. Exploring alternative loss functions in future work may enhance

performance. Then the gradients of L versus w for update is:

∂L

∂w
(c, o, :, :) = Conv(

∂L

∂y
(o, :, :), x(c, :, :))

∂L

∂w(c, o, p1, p2)
=

N−1∑
i=0,j=0

∂L

∂y(o, i, j)

∂y(o, i, j)

∂w(c, o, p1, p2)

=
N−1∑

i=0,j=0

∂L

∂y(o, i, j)
x(c, i+ p1, j + p2)

(2.15)

where ∂y(o,i,j)
∂w(c,o,p1,p2)

= x(c, i + p1, j + p2) is the input matrix value, ∂L
∂y(o,i,j)

is the loss

gradients versus convolution’s estimated output y, which can be transmitted in the

back propagation process from the final layer to the previous layers. ∂L
∂w

(c, o, :, :) denote

that the gradient is calculated for the weight associated with input channel c, output

channel o. ∂L
∂y
(o, :, :) represents the gradient of the loss with respect to the output y of

the convolution for the o− th channel. x(c, :, :) is the input to the convolution layer for

the c− th channel.

We can also find that the backward of convolution for CNNs weight is also a linear

convolution computation indeed. These gradients are propagated backward through

the network, enabling the adjustment of weights from the final layer to the preceding

layers. In a CNN, the output of one layer serves as the input to the next layer, making

it essential to compute the output at each layer in order to effectively propagate the
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gradients back and update the model parameters accordingly:

∂L

∂x(c, i′, j ′)
=

O−1∑
o=0

N−1∑
i=0,j=0

∂L

∂y(o, i, j)

∂y(o, i, j)

∂x(c, i′, j ′)

=
O−1∑
o=0

N−1∑
i=0,j=0

∂L

∂y(o, i, j)
w(c, o, i′ − i, j ′ − j)

(2.16)

where ∂y(o,i,j)
∂x(c,i′,j′)

= w(c, o, i′ − i, j ′ − j) is the value of CNNs model’s current weight w.

For the input tensor x, the backpropagation of the convolution calculates the gradient

of the loss function with respect to the input. The formula is similar to convolution

forward, using the output gradient and the convolution kernel.
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Algorithm 1 ConvolutionForward Appendix: A.1.1.
weight.width is the width of kernel, weight.height is the height of kernel,
InputLayer.channels is the number of channels for input matrix. The same applies
to other parameters.

Input: 4-dimensional input with dimensions of [batchsize, image.channels,

image.width, image.height],

4-dimensional weight with dimensions of [InputLayer.channels,

OutputLayer.channels, weight.width, weight.height],

1-dimensional bias,

activation f(x).

Output: output with dimensions of [batchsize, OutputLayer.channels,

output.Width, output.Height]

Conv Computation:

for b = 1 : batchsize do

for i = 1 : InputLayer.channels do

for j = 1 : OutputLayer.channels do

for o0 = 1 : output.width, o1 = 1 : output.height do

for w0 = 1 : weight.width, w1 = 1 : weight.height do

output[b][j][o0][o1]+ = input[b][i][o0 +w0][o1 +w1] ∗weight[i][j][w0][w1]

end for

end for

end for

end for

end for

Bias Computation:

for b=1:batchsize do

for c=1:output.count do

output[b][c]=f(output[b][c]) + bias[c] /* output.count is the number of elements

for each sample in a batch*/

end for

end for
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2.3.4 Non-Linear Function

ReLU

Forward Equation, where x ∈ R

ReLU(x) =

x, x ≥ 0

0, x < 0
(2.17)

Backward Equation, where x ∈ R the gradient of ReLU versus the input x is:

∂ReLU(x)

∂x
=

1, x ≥ 0

0, x < 0
(2.18)

MaxPool

Forward Equation Assume the inputmatrix xC×I×I for maxpool, and themaxpool

output of the input yC×N×N , and the kernel size of maxpool kmaxpool ∈ N, stride

S = kmaxpool set in the thesis, Padding is 0. the MaxPooling operation is applied to

the spatial dimensions (height and width) for each channel. In the forward pass, the

layer slides a fixed-size window over the input and selects the maximum value within

each window. This reduces the spatial resolution of the feature maps while retaining

the strongest activations. The maxpool forward can be described as:

y(c, i, j) = max
p1,p2

{x(c, i · S + p1, j · S + p2)} (2.19)

where p1 and p2 are the dimensions of the pooling window.

Figure 2.3.3: MaxPool Forward, Stride=2, Padding=0, km = 2

Backward Equation In the backward pass, the gradient is propagated only

through the locations in the input matrix x where the maximum values were selected

during the forward pass. The MaxPooling layer itself does not have any learnable

parameters, but the backward operation ensures that only the relevant positions (those
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with the maximum values in the forward pass) receive the gradient. The bcakward of

maxpool can be described as:

∂y(c, i, j)

∂x(c, i′, j ′)
=

1, if x(c, i′, j ′) was the maximum in its pooling window

0, otherwise
(2.20)

• ∂y(c,i,j)
∂x(c,i′,j′)

is the gradient of the MaxPooling output y with respect to the input x.

• ∂L
∂y(c,i,j)

is the gradient of the lossLwith respect to theMaxPooling output y(c, i, j).

• i′, j ′ represent the spatial location in the input matrix.

• The gradient is non-zero only if x(c, i′, j ′) corresponds to the maximum value in

the pooling window during the forward pass.

Figure 2.3.4: MaxPool Backward

MaxPool is a typical non-linear operation that is expensive in MPC compared to

plain-text computation, unlike average pooling. This thesis applies a ”MaxPool-

ReLU” block throughout the network to demonstrate efficiency improvements more

clearly. Comparison operations inMPC require two rounds of communication, making

MaxPool and ReLU quite costly[99].

Figure 2.3.5: ”MaxPool-ReLU” Block

2.4 Intel SGX

Intel Software Guard Extensions (SGX) is a set of security-related instruction codes

built into modern Intel processors. Intel proposed SGX idea and published on
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Figure 2.4.1: Intel SGX Interface Calls

HASP conference in 2013[69], introduced a physical CPU(Skylake) supporting SGX

at 2016[112]. SGX provides an encrypted execution environment which is a physical

area called enclave on CPU, protects and prevents the code and data from the outside

environment. These enclaves are designed to protect sensitive data and computations

from unauthorized access, even if the operating system or other system software is

compromised.

• ECall: ECALLs are interface functions running within the enclave, defined

in .edl files, and called by untrusted applications from the Rich Execution

Environment (REE), which is untrusted. Data transfer is implemented by

passing pointers and reading bytes; the enclave creates a copy of the data inside.

When the execution of an ECALL is finished, the code continues to run the next

REE ECALL functions, but the enclave remains unchanged until the next ECALL

or the enclave is closed.

• OCall: OCALLs are untrusted interfaces used to call applications running in

the REE from within the enclave. The usage of OCALLs requires interactions

between SGX and the untrusted environment, exposing the system to potential

side-channel attacks by observing the interactions It is crucial to minimize the

usage of OCALLs as much as possible to enhance security.

In this thesis, we utilize Intel SGX hardware security to execute plain-text

computations for deep learning instead of cryptographic or shared computations,

reducing communication and computation overhead. A practical and important detail

of Intel SGX libraries is that they forbid most C++ functions and some C libraries,

including the timing library, for security controls. Consequently, all functions executed

are basically in pure C style. Implementing the desired functionality from scratch using
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C standard libraries is crucial for using Intel SGX.

The deep learning models in this thesis are implemented based on C standard

libraries. This requires knowledge of linear algebra,mathematical analysis, differential

matrices, extreme points, derivative chain induction, and optimization theory, as

well as the entire computational process of CNNs. These are complex topics for

engineering programmers who want to use Intel SGX directly. The infrastructure

provided in this thesis implements CNN models that programmers can use for secure

training with Intel SGX without the requirement to understand the intricate details

of CNN implementation, which involves sophisticated mathematical induction and

implementation.

2.5 Hybrid AES-RSA Secure Channel

Asymmetric encryption algorithms, such as RSA, are inefficient for encrypting large

data due to their low performance. Conversely, symmetric encryption algorithms

like Advanced Encryption Standard (AES), while efficient, present significant key

management challenges because the keymust be securely shared between parties [37].

Research on hybrid AES-RSA algorithms validates their practicality and effectiveness

in resolving these issues [45, 53, 62]. This thesis employs the AES-RSA hybrid

encryption scheme to establish a secure communication channel. Future work can

explore newer and more efficient methods to further enhance security of secure

channel.

Advanced Encryption Standard (AES) AES is a symmetric encryption

algorithm established by NIST in 2001, widely used for securing sensitive data due

to its efficiency and robustness.

Rivest–Shamir–Adleman (RSA) RSA, developed by Rivest, Shamir, and

Adleman in 1977, is an asymmetric encryption technique. While RSA is

computationally intensive and impractical for large data encryption, it is ideal for

securely transmitting symmetric keys.

The AES-RSA hybrid channel schedule is as follows:

1. Generate a random AES key.
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2. Use AES key to encrypt data.

3. Sender encrypts the AES key using RSA public key

4. Receiver decrypts the AES key using RSA private key.

5. Decrypt the data using the AES key.

In this hybrid encryption scheme, AES encrypts the data, and RSA encrypts the AES

symmetric key. This combination ensures efficient data encryption and secure key

exchange, providing a robust solution for secure communication channels.
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SGXDL

3.1 Motivation for SGXDL

The core idea of SGXDL is to accommodate the entire CNN training process

within the SGX enclave, ensuring that training completes inside the enclave without

gradients being transferred outside. Consequently, CNNmodels remain protected and

inaccessible to external entities. Initially, SGX’s enclave capacity was limited to 128

MB, insufficient for the entire CNN model and training process. Today, the enclave

capacity has increased to 512 GB, sufficient for even large language models(LLMs).

Inspired by this progress, we propose executing all CNNs computations in the SGX,

presenting a potential path for leveraging hardware security and GPU-TEEs to address

privacy concerns.

While deep learning computations have seen significant efficiency improvements

with GPUs, plain-text calculations within the enclave on the CPU offer three key

advantages:

• Compared to other secure and cryptographic techniques, the CPU enclave’s

plain-text deep learning calculation efficiency outperforms GPU-assisted

encrypted calculations, as examined with models like LeNet, AlexNet, ResNet18,

and VGG16. The efficiency gap increases with larger model sizes. In this thesis,

we benchmark the computing performance together with the GPU assisted MPC

platforms Piranha(efficiency winner among SecureML [73], Falcon [98], and

FantasticFour [18]).
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• Wu et al. [105] proposed GPU-TEEs, introducing GPU acceleration for Intel

SGX. Our methodology embeds the entire CNN training within the SGX

enclave, leveraging hardware security for privacy computations. SGX plain-

text computation already outperforms other secure techniques, and its efficiency

can further improve with GPU-TEEs, making plain-text deep learning execution

within the enclave practical. SGXDL explores running all deep computations

within SGX and prepares for the potential future use of GPU-enabled SGX.

• State-of-art MPC protocols, typically involving 2 to 4 parties, suffer from

increased communication overhead, computation workload, and memory

requirements as the number of parties increases, making them impractical

on current servers. For instance, Piranha’s 3-party memory requirement for

ResNet18 exceeds the capacity of 24GB GPUs. In this thesis, the enclave

handles the complete process of training, with communication occurring only

at the beginning of each training batch when all parties simultaneously send

shares securely to the SGX, which then integrates these shares into plain-

text within the enclave. Consequently, execution time and performance are

minimally influenced by the number of participating parties, unlike state-of-art

MPC protocols.

3.2 The structure of SGXDL

3.2.1 Data shares distribution

The data are stored inn parties distributedly in a secret-share scheme as follows(Figure

3.2.2). Assume the original data sample x. Generate the random numbers as the data

shares x0, x1, x2, ..., xn−2(Section 2.2.4), the share xn−1 satisfies xn−1 = x −
n−2∑
k=0

xk. The

dataset and labels used for training would be sent in this way to the SGX enclave.

3.2.2 Secure Channel and Data Transfer initialization

For the server hosting the SGX enclave, although the method of share generation is

unknown, it receives all the shares from the participating parties. This poses a risk

because the server could potentially reconstruct the original data sample from these

shares. To mitigate this risk, additional encryption of the shares is necessary. Given

the high computational cost of RSA asymmetric encryption, it is impractical to encrypt
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Figure 3.2.1: SGXDL secure computing structure. The blue connection indicates the
shares transmission process from the parties to SGX for completing the training, and
the hexgram symbol denotes the data shares transmitted from the parties to the SGX.
The pink connection represents the computing results in secret-sharing format back to
the parties. The shares would be retrieved to the original raw data in the SGX enclave.

the dataset directly using RSA. Instead, RSA will be used to protect an AES symmetric

key, as described in Section 2.5.

A secure transmission channel is established to achieve this. Locally, shares are

encrypted using the AES key and this AES key is then encrypted using the RSA public

key. Once the shares are transmitted to the enclave, the AES key is decrypted using the

RSA private key within the enclave to recover the share values. This method ensures

that the shares are securely integrated into plaintext values and remaining inaccessible
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Figure 3.2.2: Data shares distribution

to the server. Most examples in the following modules will use a three-party scenario

for illustration.

Public Key and Private Key distribution

At initialization, the enclave generates the RSA key pairs for the secure transmission

channel. Since the server holds and knows the value of its own shares, it is not

necessary for the enclave to encrypt the share that held by the server. The enclave

sends the public key to all the client parties and keeps the private key securely within

the enclave.

Figure 3.2.3: RSA Public Key Exchange at Initialization(In case of 3 party)
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Secure Data Transmit and Integration

Figure 3.2.4: SGXDL secure data transmission channel

Assume the RSA public key PU , and the private key PR. Encrypt(C,K) represents

using the key K to encrypt the context C, and the Decrypt(C,K) represnt using the

key K to decrypt the context C. Assume the share xk of data sample held by the party

Pi, the random AES key AKij ∈ R are generated by party i and encrypts data sent to

party j. Define the RSA key pairs PUi and PRi are generated by party Pi.

In the local party i

x
encryptij
k = Encrypt(xk, AKij)

where xencryptij
k is the encryption value for k− th share of xwith AES keyAKij , and will

be sent from party Pi to Pj.

AKencrypt
ij = Encrypt(AKij, PUj)

where AKencrypt
ij is the encryption of symmetric key AKij by public key Pi. And in the

enclave, the symmetric key and the share would be decrypted that:

AKij = Decrypt(AKencrypt
ij , PRj)

xk = Decrypt(x
encryptij
k , AKij)

The party we send the (x
encryptij
k , AKencrypt

ij ) to the SGX, and in the sgx enclave, the

encrypted symmetric key AKencrypt
ij is decrypted to AKij using the private key Pj. And
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the encrypted shares would be decrypted to the original shares using the AKij .

xk = Decrypt(x
encryptij
k , Decrypt(AKencrypt

ij , PRj))

The the data used for training in enclave can be integrated in the enclave:

x =
n−1∑
k=0

xk

Then the plain-text CNNs training can be executed with the plain-text dataset {x} in
the secure enclave.

3.3 Task order and Synchronization

Figure 3.3.1 illustrates the SGXDL workflow throughout the entire training process.

Since the whole training process occurs within the enclave, the training can begin as

soon as the SGX receives the shares of a batch of samples. The SGX has the flexibility

to start training either after receiving a batch of data sample shares or after receiving

all data shares.

Figure 3.3.1: SGXDL task order and synchronization. The diagram describing SGXDL
synchronization illustrates the workflow of SGXDL. Section 6.3.1 shows that during
training, the exchange time between the CPU and the enclave, as well as the data
sharing integration overhead, is almost zero. The rectangular task time blocks only
represents a schedule of tasks’ orders and does not reflect real time.

3.4 Summary

• The core idea of SGXDL is to perform plain-text CNN training entirely within the

enclave, using a secret-sharing scheme to ensure that the attacker can not extract

useful information without compromising all parties.

• The model and gradients remain within the enclave throughout the whole

training process, protecting them from common federated learning attacks such
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as membership inference and gradient attacks.

• During training, SGX communicates with the outside environment only at the

beginning of training for dataset shares transmission, has minimized the risk of

side-channel attacks by limiting observable communication.

• Secure training in the enclave relies on CPU capability; hardware-secured plain-

text computation has been shown to outperform other cryptographic techniques

in efficiency, as demonstrated in Chapter 6. In the future, GPU-TEEs could

further enhance the efficiency of training complete plain-text models within the

enclave.
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HybridSGXDL

To address privacy and efficiency challenges and leverage GPU advantages for secure

deep learning in real-world scenarios, HybridSGXDL proposes a secure computing

architecture. The operations would be separated to linear and non-linear operations

with the assistance of Intel SGX. This architecture uses GPUs to accelerate the

local plain-text linear computation which are in secret sharing format. Non-linear

operations are executed in the enclave in plain-text. The communication between

parties and the server would happen at the end of each linear and non-linear

computation, to share the results for the next operations and complete the training

together.

Unlike SGXDL, which keeps all computations within the enclave, HybridSGXDL

expects devices to handle linear distributed computation with GPUs, secret sharing

model weights and data among parties. CNNs training starts from random weights,

the initialization of CNNs model weight shares would be generated by all parties in a

randommanner, that no party knows the actual initialmodel weight values. The server

can only receive the shares of intermediate computing results during the training.

CNNmodules typically consist of linear operations followed by non-linear operations.

Linear operations, such as addition andmultiplication, are performed locallywithGPU

acceleration, while non-linear operations, such as ReLUs and MaxPool, are executed

in plain-text within the Intel SGX enclave. The enclave acts as a trusted third party,

integrating intermediate results from the linear operations. After completing the non-

linear computations, the server returns the results in data shares format to the parties

for the next linear convolution computation.
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The HybridSGXDL implementation in this thesis is demonstrated under a 3-party

computation scenario.

Figure 4.0.1: Hybrid safe computing structure

4.1 Model Weight Share Distribution

In HybridSGXDL, the model weights and dataset are distributed in a secret-sharing

format. The weight updates are sent to the parties by the enclave, meaning the

server has the potential to generate all the secret shares. The initialized weights are

unknown to the parties, including the server, so even if in worst case an attacker hacks

all weight update shares, the value of the weights remains unknown. Additionally,
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adversaries must attack multiple participating parties to retrieve any potentially

useful information, distributing the risks and significantly increasing the difficulty for

attackers.

Since the server has the potential to generate all the secret shares, we apply the secure

channel schemedescribed in Section 3.2.2 to protect these shares from the server.

4.1.1 Weight Share distribution

Assume the n shares are: A = {w0, w2, ..., wn−1}, model’s real value weight w =
n−1∑
k=0

wk.

The set Ai is the set of i-th party’s holding shares, A0 is the server party owing the SGX

enclave, such that:

Ai = A\{wi+j mod n}

At the initialization state, in the project set j = 1, then the random shares generation

process would be:

• The server generate the n-1 shares randomly {wi|wi ∈ A0}. At the same time the
party P1 generate the random share w1 at the same time. (If j ̸= 1, then it would

be Pj creating wj)

• The server send share set {A0\{wi+1 mod n}} to Pi, and P1 sends share w1 to all

parties except P0.

• Themodel initialization parameter weights have been created randomly, and one

party have the information of the real values of model’s weights.

The 3 party computation share distribution in the thesis

• P0 : (w0, w2)

• P1 : (w0, w1)

• P2 : (w1, w2)

To randomly generate themodel weight shares together by all the parties, and no party

have useful information of the initialization weight real values. The 3-party condition

would follow the steps:

44



CHAPTER 4. HYBRIDSGXDL

Figure 4.1.1: Weight share distribution for HybridSGXDL(3 Party)

• P0 generate the random values w0, w2, P1 generate the random value w1 at the

same time.

• P0 send w0 secret share to P1, and w2 to P2. P1 send w1 to P2 at the same time.

Then the real value of model initialization weights is: w = w0 + w1 + w2, but no party

know this value, and in the following computation the model’s weight would consent

to be unknown for all the parties including the SGX enclave.

4.1.2 Public key and Private key Exchange for secure channel

Section 3.2.2 demonstrates the secure channel of clients sending shares to the SGX.

Since the random initialization and transmission only requires the server P0 to other

parties P1, P2, and P1 → P2. Only P1 and P2 needs create the RSA key pairs, the process

is:

• P1 and P2 create the RSA public and private key pairs locally.

• P1 and P2 send their public keys to the server P0, and P1 sends out its public key

to P2 at the same time.

4.1.3 Secure Data Transmission and Integration

After defining the transmission flow in HybridSGXDL, the secure channel to prevent

the server from potentially receiving all shares of intermediate products directly is the

same as with SGXDL (Section 3.2.2). This involves using RSA key pairs to generate

a symmetric AES key for efficient and secure transmission. The secure transmission

workflows for HybridSGXDL are illustrated in Figure 4.1.3 and Figure 4.3.4.
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Figure 4.1.2: Public Key Exchange of Initialization for model weight shares(In case of
3 parties)

Figure 4.1.3: Model weight random initialization(In case of 3 parties)

4.2 Training Dataset Share Distribution

The training dataset X is distributed to the parties in the same secret-sharing scheme

as the model weight w. Assume the dataset shares X = {x0, x1, ..., xn−1}(x =
n−1∑
k=0

xk). The training dataset shares have the same share distribution asmodel weights,

meaning Pi holds weight shares A\{wi+1 mod n}andX\{xi+1 mod n}.

For this thesis, we assume that the dataset shares are initially distributed to the parties

by the individual data owners. Unlike institutions with predictable working hours and

large datasets, individual data transmission is sporadic and unpredictable, making it

difficult for attackers to gain useful information. Consequently, we do no not consider
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additional protection mechanism beyond this inherent unpredictability.

Figure 4.2.1: Dataset shares distribution

4.3 Linear and Non-Linear Computation for CNNs

CNNs typically consist of repeating modules, such as convolution followed by ReLUs

and convolution followed by MaxPool. ReLUs and MaxPool are non-linear operations

in MPC protocols that involve significant communication overhead, and common

methods using polynomials to approximate these non-linear operations are also

computationally intensive. HybridSGXDL separates the computation of CNNs into

linear and non-linear operations.

Linear operations, such as addition and multiplication, are executed on local parties’

GPUs, leveraging GPU acceleration. These operations follow the same flow as plain-

text linear computations and maintain the same structure of arithmetic addition and

multiplication operations. Non-linear operations, such as ReLUs and MaxPool, are

executed in the SGX enclave, where plain-text computation is protected by SGX’s

hardware security.

In the thesis, the repeating modules consist of convolution followed by MaxPool and

ReLU. In these modules, the linear operations are convolutions, and the non-linear

operations are MaxPool and ReLU.
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Figure 4.3.1: Non Linear and Linear
operations Separation Computation

Figure 4.3.2: Non-Linear and Linear
Operations

4.3.1 Linear Operations on local party’s GPU

The linear computation method in MPC would not ruin the results of linear

operations(which only consists ofmultiplication and addition), in the following context

we demonstrate the correctness of convolution forward result as an example. In the

thesis we implemented and experimented the 3-party scenarios. All the following

proofs are under the 3-party set-up. Assume the input image 3-dimensional matrix

xC×I×I , the convolution 3-dimensional output yO×N×N (padding=0, stride=1), and the

4-dimensional convolution kernel wC×O×M×M . C is the channel number of the image,

e.g. the number of channels for RGB image is 3. I is the width and height of the

image matrix. O is the channels number of the output matrix. The magnitude of first

dimension of w is the same with input image x’s channels C. The convolution is:

Conv(w, x) : y(o, i, j) =
C−1∑
c=0

M−1∑
p1,p2=0

w(c, o, p1, p2) ∗ x(c, i+ p1, j + p2) (4.1)

Assume w(c, o, p1, p2)u0 is the weight share of party Pu0 for the matrix element

w(c, o, p1, p2). And the model weight shares w = w0 + w1 + w2 that

w(c, o, p1, p2) = w(c, o, p1, p2)0 + w(c, o, p1, p2)1 + w(c, o, p1, p2)2 (4.2)

x(c, i+ p1, j + p2) = w(c, o, p1, p2)0 + x(c, i+ p1, j + p2)1 + x(c, i+ p1, j + p2)2 (4.3)

Where x(c, i + p1, j + p2)u0 is the weight share of party Pu0 for input image’s element

x(c, i+ p1, j + p2). Then the convolution would be:
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y(o, i, j) =
C−1∑
c=0

M−1∑
p1,p2=0

(w(c, o, p1, p2)0 +w(c, o, p1, p2)1 +w(c, o, p1, p2)2) ∗ x(c, i+ p1, j+ p2)

(4.4)

y(o, i, j) =
C−1∑
c=0

M−1∑
p1,p2=0

w(c, o, p1, p2) ∗ x(c, i+ p1, j + p2)

=
C−1∑
c=0

M−1∑
p1,p2=0

((
2∑

u0=0

w(c, o, p1, p2)u0) ∗ (
2∑

u1=0

x(c, i+ p1, j + p2)u1))

=
C−1∑
c=0

(
M−1∑

p1,p2=0
(u0,u1)∈{(0,0),(0,2),(2,0)}

w(c, o, p1, p2)u0x(c, i+ p1, j + p2)u1

+
M−1∑

p1,p2=0
(u0,u1)∈{(1,1),(1,0),(0,1)}

w(c, o, p1, p2)u0x(c, i+ p1, j + p2)u1

+
M−1∑

p1,p2=0
(u0,u1)∈{(2,2),(2,1),(1,2)}

w(c, o, p1, p2)u0x(c, i+ p1, j + p2)u1)

= z0 + z1 + z2

(4.5)

such that

z0 =
C−1∑
c=0

M−1∑
p1,p2=0

(u0,u1)∈{(0,0),(0,2),(2,0)}

w(c, o, p1, p2)u0x(c, i+ p1, j + p2)u1

= Conv(w0, x0) + Conv(w0, x2) + Conv(w2, x0)

(4.6)

z1 =
C−1∑
c=0

M−1∑
p1,p2=0

(u0,u1)∈{(1,1),(1,0),(0,1)}

w(c, o, p1, p2)u0x(c, i+ p1, j + p2)u1

= Conv(w1, x1) + Conv(w1, x0) + Conv(w0, x1)

(4.7)

z2 =
C−1∑
c=0

M−1∑
p1,p2=0

(u0,u1)∈{(2,2),(2,1),(1,2)}

w(c, o, p1, p2)u0x(c, i+ p1, j + p2)u1

= Conv(w2, x2) + Conv(w2, x1) + Conv(w1, x2)

(4.8)

For local parties, P0 computes z0, P1 computes z1, P2 computes z2 on their GPUs, and
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send this linear results to the SGX enclave can calculate the output y(o, i, j) as shown

in Figure 4.3.1. w or x can not be retrieved from these intermediate products, and the

w weights and x data do not leave the party during the entire training process. The

above is an illustration of how an element in a convolution result matrix are calculated

in HybridSGXDL, demonstrating that this linear operation ensures the accuracy of the

final result in comparison with plain-text computation. In actual situations, thematrix

is, of course, calculated and transmitted in batches.

We have demonstrated that the correctness of the forward convolution operation

remains intact in HybridSGXDL. The backward propagation process adheres to

the same separation rules for linear and non-linear operations. Backward’s linear

operations are computed locally on clients’ GPUs, while backward’s non-linear

operations are performed within the Intel SGX enclave. Because the backward

computation of linear operations is also linear. The backward propagation of non-

linear operations remains non-linear and is executed secretly in plain-text within the

enclave. The backwardpropagation of convolution is essentially a forward convolution,

except that it operates different operands in comparisonwith convolution forward. For

example, the backward convolution compute the gradients for updating the weights,

its operands are the input matrix of forward computation and the gradient of output

matrix versus loss function(as shown in Equation 2.15). Therefore, the correctness of

the convolution’s backward pass also has been mathematically validated through the

forward as shown in Equation 4.5,4.6,4.7,4.8.

Secure Transmission for Linear Results Since the RSA keys from clients to the

server have been distributed at the initialization as shown in Figure 3.2.3, we want to

send the linear results securely to the enclave using this secure channel to prevent the

server from receiving all the shares for the linear intermediate computation results.

We always use the secure channels for communications.

4.3.2 Non Linear Operations in enclave

In the enclave, the linear result shares are integrated into plain-text values. SGX

hardware security prevents access from the outside environment. This keeps the

computation process protected and secret within the SGX enclave. After completing

the non-linear computation, the output would be separated into secret shares

{o0, o1, o2}(ReLU(z)/MaxPool(z) = o0 + o1 + o2), and sent back to parties’ GPUs
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Figure 4.3.3: Secure Linear Results Computation

via the secure channel. These shares participate in the next convolution computation

operations, continuing until the forward and backward computations of the CNNs are

completed.

Figure 4.3.4: Secure Non Linear Results Transmission from Enclave

Though the server would have received the real values of 2 shares o0, o2, it is still

necessary using secure channels for all communications to prevent the external

adversaries.

4.4 Gradient Update

The model’s weights w are updated at the end of each training. Assume the update

is ∂w, separated into shares ∂w = ∂w0 + ∂w1 + ∂w2 for updating the w0, w1, w2, the

secure transmission for the weight update workflow is the samewith non-linear results
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transmission as shown in Figure 4.4.1.

Figure 4.4.1: Gradient Shares Safe Transmission, AKij is the symmetric key used for
encrypting the transmitted shares from party Pi to Pj.

The new model weight w′ and the updated shares w
′
0, w

′
1, w

′
2 would be

w′ = w + ∂w (4.9)

w
′

0 = w0 + ∂w0, w
′

1 = w1 + ∂w1, w
′

2 = w2 + ∂w2 (4.10)

4.5 Task order and Synchronization

Figure 4.5.1 depicts the task order of a training batch for CNNs, we can notice that each

computation layer in the CNNs waiting for the results from the last layer computation,

that there is almost no synchronization for the further time optimization.

Figure 4.5.1: Task order and synchronization, the image depicts the task orders in a
training batch and the synchronization condition. The rectangular task time blocks
only represent a rough description for the task, and do not reflect the real time, in
some cases, the plain-text non linear computation time can be very short and less than
GPU linear computation time. Usually the network communication time is constant.
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4.6 Summary

• HybridSGXDL separates CNN computations into linear and non-linear

operations. Linear operations are computed distributedly in secret shares using

the same logic as plain-text linear computations on local parties, enabling the

utilization of GPUs. Non-linear operations, which are computationally intensive

in MPC cryptography protocols, are executed and protected in plain-text within

the SGX enclave, ensuring secure and efficient computation.

• Unlike state-of-art federated learning (FL), HybridSGXDL does not require

sharing model weights. Initialized weight shares are generated randomly by

each party locally, ensuring that the integrated model weights are unknown to

any party. Data shares and weights remain local during training convolution,

and only the random multiplication intermediate product shares are sent out,

protecting the data and weights from being revealed. Without access to model

weights, common gradient attacks, such as membership inference, are not

applicable.

• The shares exchanges occur through a secure transmission channel, using hybrid

AES-RSA secure channel for fast encryption and decryption.

• Data sample shares are sent directly by individuals to the computing parties,

ensuring that no party knows the data sample values. This increases security

for individuals and enables training on private datasets that they are unwilling

to share with institutions. Additionally, the discrete and unpredictable

communication from individuals makes it more difficult for attackers and

reduces the risk of data leakage, as discrete intercepted message contains

minimal information.
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Chapter 5

The Deep Learning Models in the
Implementation

This section provides details of the deep learning models enabled by the secure

computing infrastructures, essential for understanding the execution efficiency of

these models. The linear operations in the thesis are convolutions and fully-connected

neural layers, while non-linear operations are maxpool and ReLU (Eq. ??, 2.17). The

data type used in the implementation is double (8 bytes).

While practical CNN models typically use the float data type (4 bytes), the VGG16

model in this thesis, with tens of millions of parameters and a size of 297 MB, offers

practical reference for the secure computation of large language models, which are

often hundreds of MBs in size (e.g., BERT is 110 MB [56]).

The following tables demonstrate the models’ details for MNIST dataset implemented

in the thesis. The structures for cifar10 is the same withMNIST except the input layers

at the beginning to make them applicable for cifar10 images’ sizes.
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Network Dataset Model parameter number(double) Model memory size(MB)

LeNet
MNIST 51,902 0.396
Cifar10 52,202 0.398

AlexNet
MNIST 3,868,170 29.51
Cifar10 3,868,746 29.51

ResNet18
MNIST 11,167,114 85.2
Cifar10 11,168,266 85.21

VGG16
MNIST 38,946,762 297.14
Cifar10 38,947,914 297.15

Table 5.0.1: The number and size of model parameters. Note that this reflects the
parameters of plain-text CNN models; in cryptographic computations, the parameter
count may be much higher due to the specific protocol’s cryptographic format.
In SGXDL, the enclave stores the plain-text CNN model and performs plain-text
computations. This table demonstrates the computationworkload andCNNmodel size
in SGXDL. Since the CNNmodels share the same structure, the computation workload
for MNIST and CIFAR-10 for the same number of batches is almost identical, so the
time required to execute a batch for MNIST and CIFAR-10 should be similar.

layer name kernel size output size
conv1 1×6×5×5, stride=1, padding=2 6×28×28
relu - 6×28× 28

maxpool 2×2, stride=2 6×14×14
conv2 6×16×5×5, stride=1 16×10×10
relu - 16×10×10

maxpool 2×2, stride=2 16×5× 5
conv3 16×120× 5×5, stride=1 120×1× 1
relu - 120×1× 1
fc 120×10 10
relu - 10

Table 5.0.2: LeNet Structure(MNIST) [55], fc is the fully-connected layer, conv is the
convolution layer. The C code defined the structure in implementation see Appendix
A.2.1
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layer name kernel size output size
conv1 1×32× 3×3, stride=1, padding=1 32×28×28
relu - 32×28×28

maxpool 2×2, stride=2 32×14×14
conv2 32×64×3×3, stride=1, padding=1 64×14×14
relu - 64×14×14

maxpool 2×2, stride=2 64×7×7
conv3 64×128×3×3, stride=1, padding=1 128×7×7
relu - 128×7×7
conv4 128×256×3×3, stride=1, padding=1 256×7×7
relu - 256×7×7
conv5 256×256×3×3, stride=1, padding=1 256×7×7
relu - 256×7×7

maxpool 3×3, stride=2 256×3×3
fc1 (256*3*3)×1024 1024
relu - 1024
fc2 1024×512 512
relu - 512
fc3 512×10 10
relu - 10

Table 5.0.3: AlexNet Structure(MNIST)[52]. Appendix A.2.2
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layer name kernel size output size
conv1 1×64×3×3, stride=1, padding=3 64×32×32
relu - 64×32×32

maxpool 2×2, stride=2 64×16×16

Res Block1

conv1 64×64×3×3, stride=1, padding=1 64×16×16
relu - 64×16×16
conv2 64×64×3×3, stride=1, padding=1 64×16×16
relu - 64×16×16
conv3 64×64×3×3, stride=1, padding=1 64×16×16
relu - 64×16×16
conv4 64×64×3×3, stride=1, padding=1 64×16×16
relu - 64×16×16

Res Block2

conv1 64×128×3×3, stride=2, padding=1 128×8×8
relu - 128×8×8
conv2 128×128×3×3, stride=1, padding=1 128×8×8
relu - 128×8×8
conv3 128×128×3×3, stride=1, padding=1 128×8×8
relu - 128×8×8
conv4 128×128×3×3, stride=1, padding=1 128×8×8
relu - 128×8×8

Res Block3

conv1 128×256×3×3, stride=2, padding=1 256×4×4
relu - 256×4×4
conv2 256×256×3×3, stride=1, padding=1 256×4×4
relu - 256×4×4
conv3 256×256×3×3, stride=1, padding=1 256×4×4
relu - 256×4×4
conv4 256×256×3×3, stride=1, padding=1 256×4×4
relu - 256× 4× 4

Res Block4

conv1 256×512×3×3, stride=2, padding=1 512×2×2
relu - 512×2×2
conv2 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512× 2× 2
conv3 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512×2×2
conv4 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512×2×2

maxpool 2×2, stride=2 256×1×1
fc 512×10 10
relu - 10

Table 5.0.4: ResNet18 Structure(MNIST)[39]. ResBlock is the convolution blockswith
res connections. Appendix A.2.3
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layer name kernel size output size

Conv Block1

conv1 1×64×3×3, stride=1, padding=3 64×32×32
relu - 64×32×32
conv2 64×64×3×3, stride=1, padding1 64×32×32
relu - 64×32×32

maxpool 2×2, stride=2 64×16×16

Conv Block2

conv1 64×128×3×3, stride=1, padding=1 128×16×16
relu - 128×16×16
conv2 128×128×3×3, stride=1, padding=1 128×16×16
relu - 128×16×16

maxpool 2×2, stride=2 128×8×8

Conv Block3

conv1 128×256×3×3, stride=1. padding=1 256×8×8
relu - 256×8×8
conv2 256×256×3×3, stride=1, padding=1 256×8×8
relu - 256×8×8
conv3 256×256×3×3, stride=1, padding=1 256×8×8
relu - 256×8×8
conv4 256×256×3×3, stride=1, padding=1 256×8×8
relu - 256×8×8

maxpool 2×2, stride=2 256×4×4

Conv Block4

conv1 256×512×3×3, stride=1, padding=1 512×4×4
relu - 512×4×4
conv2 512×512×3×3, stride=1, padding=1 512×4×4
relu - 512×4×4
conv3 512×512×3×3, stride=1, padding=1 512×4×4
relu - 512×4×4
conv4 512×512×3×3, stride=1, padding=1 512×4×4
relu - 512×4×4

maxpool 2×2, stride=2 512×2×2

Conv Block5

conv1 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512×2×2
conv2 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512×2×2
conv3 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512×2×2
conv4 512×512×3×3, stride=1, padding=1 512×2×2
relu - 512×2×2

maxpool 2×2, stride=2 512×1×1
fc1 512×4096 4096
relu - 4096
fc2 4096×4096 4096
relu - 4096
fc3 4096 ×10 10
relu - 10

Table 5.0.5: VGG16 Structure(MNIST)[86]. ResBlock is the convolution blocks with
res connections. Appendix A.2.4
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Results and Analysis

This chapter presents the performance evaluation of SGXDL and HybridSGXDL in

real-world deep learning applications, examining both macro and micro-level details.

The chapter analyzes SGXDL andHybridSGXDL’s features and identifies the scenarios

where each is most suitable. A comparison with Piranha is also provided to highlight

the superior efficiency of SGXDL and HybridSGXDL in secure computing. All data

in this thesis were generated under a LAN setup with 2GB/s bandwidth and 2ms

latency.

6.1 Non-linear operation in Intel SGX

Non-linear operations are heavily consuming with a large communication overhead

and memory requirement of cryptography computation including MPC protocols.

Piranha applied the MPC protocols with GPU acceleration, but the ReLU execution

still requires more time than plain-text computation without GPU acceleration in

SGX. There is a further question for MPC utilizing GPUs, that the GPU acceleration

algorithms are primarily designed for floating point arithmetic computation with

reasonable memory constraints, while MPC are operating over integer types with

significantly high available memory requirements. Though Piranha adds the integer

type support enabling GPU integer type acceleration, there is the cost that using less

efficient GPU integer cores and kernels, such solutions also require an extremely high

memory requirement.

Indicated by Figure 6.4.1, the ReLU plain-text computation in SGX is farmore efficient
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and quickly than Piranha’s secure computation of MPC protocols with the acceleration

of GPUs, which provides the idea to put the computation especially the non-linear

computation of plain-text computation format in SGX enclave with the protection of

hardware security techniques. This observation provides the evidence and support to

propose the non-linear operation into SGX enclave for plain-text computation.

It can also be observed that the execution time from the beginning of a small

computation workload does not increase until the ReLU computation workload size

become larger than 1 MB, which indicates that the beginning lowest of 2ms is mainly

the time to call SGX interface and transform the data to enclave.

Figure 6.1.1: ReLU execution time in SGX compared with Piranha

6.2 Efficiency Comparison SGXDL vs. HybridSGXDL

vs. Piranha

From Table 6.2.1, we can conclude that SGXDL is the most efficient secure

computation infrastructure for moderate computation workloads, which have been

useful for most CNN industry applications [29, 78, 90]. On the other hand,

HybridSGXDL demonstrates superior performance for large models and high-batch

training computations, making it a feasible solution for secure training of large

language models (LLMs). Both SGXDL and HybridSGXDL outperform Piranha in

terms of computation efficiency. Piranha faces limitations due to GPU memory

overflow caused by limitedmemory on GPUs, while SGXDL andHybridSGXDL, which

use plain-text computation with reasonable memory requirements, do not suffer from

this disadvantage.
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SGXDL
HybridSGXDL

(3PC)
Piranha
(2PC)

Piranha
(3PC)

Piranha
(4PC)

batchsize=1

LeNet
MNIST 15.00 12,272.41 588.35 1,618.52 2,462.94
Cifar10 29.50 11,845.01 1,011.81 1,618.52 2,161.96

AlexNet
MNIST 1,415.70 24,965.14 13,013.80 2,886.52 7,013.60
Cifar10 1,812.55 23,977.07 3,431.93 2,765.13 6,996.19

ResNet18
MNIST 3,621.14 63,932.61 73,486.00 22,878.86 57,304.80
Cifar10 3,642.14 63,130.10 27,838.00 23,484.04 57,467.20

VGG16
MNIST 11,645.89 76,775.55 16,905.30 13,959.71 29,298.70
Cifar10 13,000.70 64,503.51 16,462.60 27,897.08 29,152.80

batchsize=100

LeNet
MNIST 232.40 12,298.98 7,805.07 1,337.70 13,530.10
Cifar10 451.40 12,624.20 7,991.68 6,019.23 13,707.80

AlexNet
MNIST 17,032.80 25,952.27 100,063.00 107,841.10 158,161.00
Cifar10 21,599.30 28,661.03 99,370.00 63,969.34 159,431.00

ResNet18
MNIST 43,236.20 67,048.59 567,553.00 N/A N/A
Cifar10 43,933.70 65,331.23 499,207.00 N/A N/A

VGG16
MNIST 168,929.90 81,493.17 N/A N/A N/A
Cifar10 131,468.90 67,897.09 N/A N/A N/A

batchsize=300

LeNet
MNIST 567.00 13,065.24 22,753.20 17,391.69 38,193.00
Cifar10 1,083.60 13,141.89 22,174.70 17,758.10 38,951.50

AlexNet
MNIST 48,122.90 27,641.74 295,326.00 N/A N/A
Cifar10 62,005.30 28,240.25 294,758.00 N/A N/A

ResNet18
MNIST 122,788.40 70,640.84 N/A N/A N/A
Cifar10 125,122.80 66,859.13 N/A N/A N/A

VGG16
MNIST 519,591.67 82,328.94 N/A N/A N/A
Cifar10 358,065.00 75,625.55 N/A N/A N/A

batchsize=1000

LeNet
MNIST 1,916.33 13,853.92 75,242.90 N/A N/A
Cifar10 3,595.83 16,421.78 75,242.90 N/A N/A

AlexNet
MNIST 160,078.83 35,939.76 N/A N/A N/A
Cifar10 203,220.67 28,807.49 N/A N/A N/A

ResNet18
MNIST 405,699.17 91,033.73 N/A N/A N/A
Cifar10 407,061.33 106,064.55 N/A N/A N/A

VGG16
MNIST 1,774,915.67 137,688.56 N/A N/A N/A
Cifar10 1,136,187.33 138,133.41 N/A N/A N/A

Table 6.2.1: The secure computation execution(ms), ’N/A’ is thememory overflow that
not available to execute the computation. The bold font denote the efficiency winner
of the same computation workload. The time is the time required to run a batch of
training.
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HybridSGXDL starts with a 12,272.41 ms execution time for the smallest computation

workloads due to the exchange time between the CPU and GPU, as well as

communication time. In contrast, SGXDL directly calculates the plain-text data

with only one initial communication overhead in the enclave, and the exchange time

between the enclave and CPU is nearly zero for normal data sizes. However, as the data

computation size increases, HybridSGXDL shows its advantage with GPU acceleration

for floating-point computations.

The datasets CIFAR-10 and MNIST use the same CNN structure, resulting in almost

identical computation workloads for the same number of batches. SGXDL and

HybridSGXDL exhibit similar execution times when the computation workload is

consistent. However, Piranha’s execution time can be highly unstable. For instance,

Piranha (2PC) with batch size 1 and AlexNet shows significantly different execution

times onMNIST and CIFAR-10, at 13,013.80ms and 3,431.93ms, respectively, despite

their similar computation workloads. Several other pairs with similar workloads also

demonstrate this instability, as shown in Table 6.2.1.

This instability in Piranha using MPC protocols with GPU acceleration can be

attributed to several factors. Firstly, Piranha is heavily impacted by communication

overheads, causing the CPU to wait for communication and the GPU to operate

below full capacity. Piranha needs more communication rounds that it has to handle

the synchronization between communication and GPUs computation, in comparison

with SGXDL and HybridSGXDL’s single workflow. The frequent data exchanges

between the CPU and GPU, along with the constant communication requirement,

further exacerbate the issue. Although GPUs are capable of handling large workloads

in parallel, their efficiency can be hindered by limited communication speed. This

constraint forces GPUs to either wait for all data to arrive, incurring communication

overhead, or proceedwith computations despite incomplete data, leading to additional

CPU-GPU exchanges to handle the remaining workloads. Both scenarios result in

suboptimal operation. Even when all data is eventually received, the CPU may still

need towait for theGPU to complete its current tasks. In contrast, withHybridSGXDL,

GPUs at local parties only begin processing after receiving all data shares for the

current iteration, ensuringmore efficient synchronization and operation. The complex

synchronization of Piranha leads to unpredictable waiting periods during training,

resulting in highly variable and unstable execution times, as illustrated in Table 6.2.1.

In contrast, SGXDL and HybridSGXDL, as shown in Figure 3.3.1, follow a clear and
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Number of images 100 300 1000 60000
MNIST 4 15 50 3,055
Cifar10 19 58 197 12,062

Table 6.3.1: The table presents the communication time required to transfer images
of various sizes (ms) in a 3-party and LAN 2GB/s setup. It shows the time taken by
the parties to send data shares for a specific number of samples to the SGX server.
This communication time can remain consistent regardless of the number of parties,
as all parties send their data shares simultaneously. However, when a large number
of parties are sending samples concurrently, the server’s receiving capacity need to be
further evaluated for the communication time.

single workflow without requiring such complex synchronization, leading to stable

execution efficiency.

6.3 SGXDL performance analysis

6.3.1 SGXDL overhead analysis

This section demonstrates the overhead involved in SGXDL training, which includes

communication overhead, exchange time between the CPU and enclave, and data

shares integration time. The analysis concludes that these overheads are nearly zero

in practical training scenarios. This implies that SGXDL primarily spends time on

plain-text computation, which is the main reason why SGXDL outperforms Piranha’s

cryptographic computation, which suffers heavily from communication overhead and

CPU-GPU data exchange overhead.

Communication Time

Since each training session only requires a batch size of data samples, training can

begin immediately after receiving the first batch of samples. During training, the

server continues to receive additional data sample shares. As indicated in Figure 4.5.1,

the communication overhead only involves the transmission of the first batch of data

sample shares. Table 6.3.1 demonstrates the communication time for different sizes

of shares. For example, the 50 ms communication overhead for a batch size of 1000

MNIST images in SGXDL constitutes only a small part of the overall batch training

time.
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Batchsize CNNs model Dataset Communication overhead

batchsize=100

LeNet
MNIST 1.72%
Cifar10 4.21%

AlexNet
MNIST 0.02%
Cifar10 0.09%

ResNet18
MNIST 0.01%
Cifar10 0.04%

VGG16
MNIST 0.00%
Cifar10 0.01%

batchsize=300

LeNet
MNIST 2.65%
Cifar10 5.35%

AlexNet
MNIST 0.03%
Cifar10 0.09%

ResNet18
MNIST 0.01%
Cifar10 0.05%

VGG16
MNIST 0.00%
Cifar10 0.00%

batchsize=1000

LeNet
MNIST 2.61%
Cifar10 5.48%

AlexNet
MNIST 0.03%
Cifar10 0.10%

ResNet18
MNIST 0.01%
Cifar10 0.05%

VGG16
MNIST 0.00%
Cifar10 0.02%

Table 6.3.2: The communication overhead for a batch of training of SGXDL(2PC). It
shows that in some conditions of computation workloads, communication overhead
for training a batch number of data samples have been nearly zero. As the number
of data samples increases in practical scenarios, the communication overhead would
reduce to zero.

Number of images(double) 1000 10000 20000 30000 40000 60000 800000 180000 240000
MNIST ∼ 0 1 2 3 4 7 23 104 148
Cifar10 ∼ 0 7 9 14 56 100 150 N/A N/A

Table 6.3.3: Exchange time between enclave and CPU(ms), the table shows the
exchange time between CPU and enclave for different sizes of data exchanges. The
data type of data is double.
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Number of parties 2 PC 3 PC 4 PC 10 PC 15 PC 20 PC 40 PC 50 PC
Integration time(ms) 4 4 5 5 5 5 6 9

Table 6.3.4: The integration of data shares in the enclave for 60,000 MNIST images.
The table demonstrates the integration time required to retrieve the original data under
different party conditions. The data type used is double.

The exchange time between CPU and enclave

Table 6.3.3 demonstrates that in SGXDL and HybridSGXDL, the data exchange time

between the enclave and CPU is nearly zero. This is because each training session

processes a batch of images, with the maximum batch size being 1000. Therefore,

in SGXDL and HybridSGXDL, the data size for each exchange is not larger than this

1000-image batch, resulting in minimal exchange time. The enclave, being a physical

area on the CPU, allows for this minimal exchange time. This is in stark contrast to

the exchange time between the CPU and GPU, where data exchange often constitutes

a major overhead in GPU computations.

The integration time for data shares

As we know, data shares need to be integrated in the enclave before executing plain-

text computation. Table 6.3.4 shows that the integration time would be nearly zero in

applications because, in SGXDL, each session typically processes only a batch of data

samples’ shares, with a maximum batch size of 1000. This is much smaller than the

data sizes in the Table 6.3.4. In extreme cases with many participating parties, there

would be some integration time, but it would still represent a very small fraction of the

total computation training time for SGXDL.

Since SGXDL executes the entire plain-text training process within the enclave,

the number of parties only affects the data size for communication, exchange, and

integration, with overheads being nearly zero in most practical cases. Therefore, we

can conclude that the number of participating parties has a very limited influence on

SGXDL’s performance, making it a viable solution for scenarios with a large number

of participating parties.

SGXDL computation ability analysis

As evidenced in Table 6.3.5, the computational capability of Intel SGX for CNNs is

inferior even to that of the CPU. The Intel SGX environment supports only 9 threads
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Batchsize CNNs model Dataset CPU Intel SGX

batchsize=1

LeNet
MNIST 7.33 15.00
Cifar10 10.02 29.50

AlexNet
MNIST 929.47 1,415.70
Cifar10 3,833.64 1,812.55

ResNet18
MNIST 2,815.83 3,621.13
Cifar10 4,156.36 3,642.14

VGG16
MNIST 4,665.35 11,645.89
Cifar10 10,342.32 13,000.70

batchsize=100

LeNet
MNIST 31.51 232.40
Cifar10 41.86 451.40

AlexNet
MNIST 2,445.56 17,032.80
Cifar10 7,061.73 21,599.30

ResNet18
MNIST 10,977.70 43,236.20
Cifar10 11,289.12 43,933.70

VGG16
MNIST 20,770.98 168,929.90
Cifar10 20,312.35 131,468.90

batchsize=300

LeNet
MNIST 88.43 567.00
Cifar10 95.26 1,083.60

AlexNet
MNIST 7,377.75 48,122.90
Cifar10 8,695.30 62,005.30

ResNet18
MNIST 35,786.55 122,788.40
Cifar10 21,117.2 125,122.8

VGG16
MNIST 68,704.3 519,591.6667
Cifar10 94,676.65 358,065.00

batchsize=1000

LeNet
MNIST 244.93 1,916.33
Cifar10 268.43 3,595.83

AlexNet
MNIST 20,192.00 160,078.83
Cifar10 25,138.83 203,220.67

ResNet18
MNIST 97,536.67 405,699.17
Cifar10 119,430.17 407,061.33

VGG16
MNIST 238,136.00 1,774,915.67
Cifar10 271,556.67 1,136,187.33

Table 6.3.5: The computation time comparison between CPU and Intel SGX(ms).

for parallel computing, in contrast to the CPU, which can utilize up to 144 threads.

This disparity results in significantly slower computation times for SGX compared to

the CPU. Additionally, the CPU itself underperforms compared toGPUacceleration for

Convolutional Neural Networks (CNNs). Consequently, SGXDL is less efficient than

HybridSGXDL for handling large data computation workloads.

6.4 HybridSGXDL performance analysis

6.4.1 Non-linear and Linear Computation

From Tables 6.4.1, 6.4.2, and 6.4.3, it is evident that non-linear operations, such

as ReLU computation in Piranha, are significantly more expensive than secure

plain-text ReLU computation in HybridSGXDL. This discrepancy primarily affects

Piranha’s performance, while HybridSGXDL benefits from it. For linear operations

in HybridSGXDL, such as convolution and fully connected layers, the computation

time for small and moderate tasks is similar, mainly consisting of CPU-GPU exchange

66



CHAPTER 6. RESULTS AND ANALYSIS

time. Although Piranha outperforms HybridSGXDL in linear computations for small

and moderate workloads, its higher memory requirement leads to slower execution

compared to HybridSGXDL and memory overflow for larger batch sizes and models,

making it unfeasible.

Figure 6.4.1: ReLU overhead for HybridSGXDL and Piranha (batch size = 100). The
figure shows the ReLU computation time (ms) for the sameworkload inHybridSGXDL
and Piranha, indicating that Piranha suffers from heavy ReLU computation overhead.
There are no statistical data for Piranha executing VGG16 and ResNet18 due to its high
memory requirements, making execution impossible.

6.4.2 Communication overhead

From Figure 6.4.2, we can infer several critical insights regarding the communication

overhead of the evaluated protocols. Piranha with 2-party and 3-party protocols

suffers significantly from communication overhead. Although the 4-party Piranha

protocol appears to exhibit a lower communication overhead, it encounters numerous

conditions it cannot execute due to large memory requirements, leading to memory

overflow.

HybridSGXDL consistently maintains the lowest communication overhead compared

to Piranha across all data points. Although its communication time increases with

larger computational workloads, it is not significantly impacted by the workload

size. This is due to the fact that the primary computation time is dominated by the

efficient data exchange between the GPU and CPU, where GPU computation remains

fast regardless of data size. In contrast, Piranha’s communication time increases
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CNNs model Dataset Secure computation Relu Conv Fc

LeNet

MNIST
HybridSGXDL 20.42 9,788.42 2,454.76
Piranha(2PC) 449.01 108.29 24.31
Piranha(4PC) 1,663.87 672.95 97.75

Cifar10
HybridSGXDL 22.70 10,104.54 6,437.34
Piranha(2PC) 872.90 104.51 26.46
Piranha(4PC) 1,676.86 348.28 136.82

AlexNet

MNIST
HybridSGXDL 40.11 17,294.70 7,613.41
Piranha(2PC) 6,123.99 3,483.95 3,971.81
Piranha(4PC) 4,162.24 1,432.48 1,390.19

Cifar10
HybridSGXDL 1,013.14 17,663.05 8,572.06
Piranha(2PC) 1,692.40 795.23 934.24
Piranha(4PC) 4,070.43 1,475.19 1,450.55

ResNet18

MNIST
HybridSGXDL 148.27 60,316.00 3,427.16
Piranha(2PC) 20,307.40 45,882.49 26.33
Piranha(4PC) 18,854.71 25,714.94 142.07

Cifar10
HybridSGXDL 85.01 59,677.30 3,347.17
Piranha(2PC) 6,720.78 17,682.75 23.52
Piranha(4PC) 18,483.81 26,096.50 114.66

VGG16

MNIST
HybridSGXDL 138.25 64,749.39 11,844.76
Piranha(2PC) 5,470.29 11,251.64 176.01
Piranha(4PC) 12,715.48 16,150.69 404.17

Cifar10
HybridSGXDL 148.00 53,938.77 10,365.97
Piranha(2PC) 5,234.41 11,062.23 157.72
Piranha(4PC) 12,705.31 16,015.11 432.37

Table 6.4.1: Comparison of linear andnon-linear operations computation time (ms) for
batch size = 1 training. The table demonstrates the computation time for non-linear
(ReLU) and linear operations (Conv: convolution, and Fc: fully connected neural
layer) to train a batch of data samples with batch size = 1.

CNNs model Dataset Secure computation Relu Conv Fc

LeNet

MNIST
HybridSGXDL 38.00 10,018.08 2,120.84
Piranha(2PC) 6,488.14 807.35 24.03
Piranha(4PC) 10445.78 1,986.38 115.88

Cifar10
HybridSGXDL 34.75 9,991.44 2,436.28
Piranha(2PC) 13020.74 794.57 24.09
Piranha(4PC) 10,634.79 1,978.01 1,095.00

AlexNet

MNIST
HybridSGXDL 445.34 17,549.41 7,615.08
Piranha(2PC) 90,160.70 8,169.61 1,240.08
Piranha(4PC) 136,924.35 18,597.40 1,646.91

Cifar10
HybridSGXDL 371.33 17,583.80 7,668.20
Piranha(2PC) 89612.17 8,083.19 1,193.79
Piranha(4PC) 138,401.64 18,334.15 2,694.90

ResNet18

MNIST
HybridSGXDL 581.09 62,805.01 3,298.77
Piranha(2PC) 379,778.39 56,497.60 47.32
Piranha(4PC) N/A N/A N/A

Cifar10
HybridSGXDL 648.20 60,432.96 3,729.67
Piranha(2PC) 336402.31 50,944.13 48.21
Piranha(4PC) N/A N/A N/A

VGG16

MNIST
HybridSGXDL 982.80 67,135.34 12,960.23
Piranha(2PC) N/A N/A N/A
Piranha(4PC) N/A N/A N/A

Cifar10
HybridSGXDL 1,061.00 55,810.51 10,145.53
Piranha(2PC) N/A N/A N/A
Piranha(4PC) N/A N/A N/A

Table 6.4.2: Comparison of linear and non-linear operations computation time (ms)
for batch size = 100 training. ”N/A” indicates GPU memory overflow error, making
execution unavailable.
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CNNs model Dataset Secure computation Relu Conv Fc

LeNet

MNIST
HybridSGXDL 57.28 10,601.25 2,003.70
Piranha(2PC) 18,863.01 2,428.85 40.19
Piranha(4PC) 29,661.99 5,508.42 121.90

Cifar10
HybridSGXDL 46.43 10,118.56 2,489.78
Piranha(2PC) 18,748.62 1,963.08 36.20
Piranha(4PC) 30,268.89 5,702.77 2,979.77

AlexNet

MNIST
HybridSGXDL 1,056.59 18,145.94 7,518.71
Piranha(2PC) 268,962.80 23,033.49 1,899.78
Piranha(4PC) N/A N/A N/A

Cifar10
HybridSGXDL 1,013.14 17,663.05 8,572.35
Piranha(2PC) 268,029.46 23,097.97 1,882.24
Piranha(4PC) N/A N/A N/A

ResNet18

MNIST
HybridSGXDL 1,704.54 64,257.77 3,279.16
Piranha(2PC) N/A N/A N/A
Piranha(4PC) N/A N/A N/A

Cifar10
HybridSGXDL 581.50 62,191.56 3,379.08
Piranha(2PC) N/A N/A N/A
Piranha(4PC) N/A N/A N/A

VGG16

MNIST
HybridSGXDL 3,288.38 65,116.62 12,446.55
Piranha(2PC) N/A N/A N/A
Piranha(4PC) N/A N/A N/A

Cifar10
HybridSGXDL 3,018.00 59,626.80 10,258.74
Piranha(2PC) N/A N/A N/A
Piranha(4PC) N/A N/A N/A

Table 6.4.3: Comparison of linear and non-linear operations computation time (ms)
for batch size = 300 training. ”N/A” indicates GPU memory overflow error, making
execution unavailable.

dramatically with larger model sizes, making it unsuitable for the secure training of

large-scale models.

The substantial communication overhead in Piranha is primarily attributed to the

frequent data share exchanges required for non-linear operations such as ReLU and

Maxpool. Each of these operations necessitates multiple rounds of communication

between parties, significantly increasing overhead.

In contrast, HybridSGXDL reduces communication overhead by performing secure

plain-text floating-point computations with the assistance of SGX, requiring data

share exchanges only as many times as the number of layers in CNNs. This single

workflow communication strategy enables HybridSGXDL to maintain lower overhead

and demonstrates its efficiency in handling larger computational workloads.

The significant communication overhead observed in Piranha protocols, particularly

as the model size increases, suggests that these protocols may not be suitable for

applications requiring efficient and scalable secure training of large models. On

the other hand, HybridSGXDL’s ability to maintain low and stable communication

overhead makes it a more practical solution for such applications, offering better

performance and scalability.
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Batchsize CNNs model Dataset HybridSGXDL Piranah(2PC) Piranha(3PC) Piranha(4PC)

batchsize=100

LeNet
MNIST 97.00 5,567.12 253.76 163.25
Cifar10 131 5,734.14 4,492.22 460.76

AlexNet
MNIST 1,040.00 76,375.15 88,994.24 2,072.67
Cifar10 1,385 75,660.33 60,740.58 3,954.54

ResNet18
MNIST 2,821 307,534.48 N/A N/A
Cifar10 2,851.00 305,505.69 N/A N/A

VGG16
MNIST 4,406.00 N/A N/A N/A
Cifar10 4,425.00 N/A N/A N/A

batchsize=300

LeNet
MNIST 345.00 17,141.27 13,499.26 936.01
Cifar10 440 17,724.98 13,816.36 1,382.27

AlexNet
MNIST 3,201.00 229,091.92 N/A N/A
Cifar10 4,206.00 237,010.01 N/A N/A

ResNet18
MNIST 8,477.00 N/A N/A N/A
Cifar10 8,552.00 N/A N/A N/A

VGG16
MNIST 13,214.00 N/A N/A N/A
Cifar10 13,293.00 N/A N/A N/A

batchsize=1000

LeNet
MNIST 1,149.00 59,986.84 N/A N/A
Cifar10 1,510.00 59,942.62 N/A N/A

AlexNet
MNIST 10,637.00 N/A N/A N/A
Cifar10 14,093.00 N/A N/A N/A

ResNet18
MNIST 28,311.00 N/A N/A N/A
Cifar10 28,774.00 N/A N/A N/A

VGG16
MNIST 44,552.00 N/A N/A N/A
Cifar10 44,342.00 N/A N/A N/A

Table 6.4.4: Communication time(ms), the table demonstrates the communication
time for a batch of training in secure computing infrastructures.

6.4.3 Exchange overhead between CPU and GPU

Figures 6.4.3, 6.4.4, and 6.4.7 provide a comprehensive analysis of the computation

and exchange overheads in HybridSGXDL.

FromFigure 6.4.7, we observe that the computation overhead inHybridSGXDL, which

includes both non-linear operations on the CPUwith SGX and linear operations on the

GPU, decreases as the batch size increases. This trend is consistent across different

neural network models such as LeNet, AlexNet, ResNet18, and VGG16. This indicates

that the system becomes more efficient in handling larger batch sizes, leading to a

reduction in the relative overhead.

Figure 6.4.4 further breaks down the exchange overhead between the CPU and GPU.

It shows a potential downward trend in overhead as the computational workload

increases with larger batch sizes. This suggests that the system’s efficiency improves

with increased workloads, likely due to better parallel processing and reduced relative

communication time between the CPU and GPU. Additionally, Figure 6.4.3 provides

a detailed comparison of the exchange overhead between different models and batch

sizes. It highlights that, although the exchange overhead constitutes a significant

portion of the total computation overhead, this overhead decreases as the batch size

increases. For instance, the overhead for LeNet, AlexNet, ResNet18, and VGG16 is
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Figure 6.4.2: Communication Overhead Comparison. The figure compares the
communication overhead for different neural network architectures (LeNet, AlexNet,
ResNet18, and VGG16) across various batch sizes. Note that for batch sizes of 300 and
1000, the data points aremissing for Piranha because of the largememory requirement
unavailable to execute. These missing values represent very large overheads and are
not zeros. This highlights the significant increase in overhead when the batch size
reaches these values. It can be concluded that Piranha exhibits a very large overhead,
which significantly impacts its performance.

substantially higher at smaller batch sizes but diminishes as the batch size grows,

indicating improved efficiency and scalability.

In summary, these figures collectively demonstrate that while the exchange overhead

between the CPU and GPU is a significant component of the total computation time,

it exhibits a decreasing trend with increasing computational workloads and batch

sizes. This also aligns with our analysis in Section6.3.1, where we concluded that

the exchange overhead between the CPU and SGX is minimal and negligible. The

efficient handling of larger computational workloads by HybridSGXDL highlights

its potential for scalability and performance optimization in secure deep learning

applications.
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Figure 6.4.3: The image reveals apart from communication
overhead, the remaining overhead for HybridSGXDL mainly
consists of the exchange time between the CPU and GPU. This
indicates that the time spent on non-linear operations on the
SGX and linear operations on the GPU constitutes the main
portion of the total computation time for HybridSGXDL.

Figure 6.4.4: The figures indicate a potential downward trend
in CPU and GPU exchange overhead as the computational
workload increases with larger model sizes for each training
batch.

Figure 6.4.5: Exchange overhead CPU and GPU in HybridSGXDL(MNIST), the figure
describes the exchange overhead between CPU and GPU of HybridSGXDL among
various CNNs models and batchsizes.

Batchsize CNNs model Exchange Time

batchsize=100

LeNet 4,108.15
AlexNet 8,216.30
ResNet18 23,528.87
VGG16 22,939.80

batchsize=300

LeNet 4,008.90
AlexNet 9,328.69
ResNet18 25,774.83
VGG16 20,071.21

batchsize=1000

LeNet 5,014.02
AlexNet 10,028.05
ResNet18 23,402.26
VGG16 24,381.48

Table 6.4.5: Exchange time between CPU and GPU(MNIST,ms) in HybridSGXDL
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Figure 6.4.6: Computation Overhead of HybridSGXDL(MNIST)

Figure 6.4.7: Computation Overhead of HybridSGXDL(MNIST). There are missing
data points of Piranha because of memory overflow.

6.4.4 Accuracy

Figure 6.4.8 illustrates that HybridSGXDL maintains accuracy without any drop

during secure computation. This is achieved by executing floating-point plain-

text calculations securely, ensuring precise and accurate results. Similarly, SGXDL

also maintains plain-text computation without any accuracy drop, highlighting its

effectiveness in secure environments.

In contrast, Piranha encounters accuracy concerns due to its use of integer
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cryptography calculations. By approximating non-linear operations like ReLU

with polynomials, Piranha inevitably suffers from precision loss. This comparison

underscores the advantage of HybridSGXDL and SGXDL in preserving computational

accuracy while ensuring security.

The training loss curves for different models such as LeNet, VGG, and ResNet18 on

the CIFAR-10 dataset show that HybridSGXDL effectively maintains low training loss

across epochs. This consistent performance across various models demonstrates the

robustness and reliability of HybridSGXDL in secure computation scenarios.

Figure 6.4.8: Training Loss in HybridSGXDL

6.5 Security Analysis

This section provides the security analysis for the privacy-preserving deep learning

infrastructures, SGXDL and HybridSGXDL, proposed in this thesis. The secure

computing infrastructure utilizes Intel SGX hardware, involving a server with the

SGX enclave and several clients. All participants are assumed to be honest but

curious (semi-honest), meaning they may attempt to retrieve useful information but

will not maliciously attack the system by adding noise to the shares. The computing

workflow follows the logic of weighted federated learning, where data is separated and

distributed among participants in secret-sharing random data share formats. Secure

channels are established to prevent the server from receiving all share values.

6.5.1 Side-Channel Attack for Intel SGX

A primary concern with Intel SGX is the potential for side-channel attacks, which can

occur mainly through OCalls (calls from the enclave to execute functions outside the
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enclave) and interactions between the enclave and the external environment.

SGXDL

In SGXDL, the model is preserved within the enclave, and all computations are

performed by SGX. The model remains within the enclave throughout the computing

process. Interaction between the enclave and the outside world only occurs for dataset

share exchanges, resulting in minimal interactions. There are no OCalls from the

enclave during computing, making side-channel attacks like timing attacks, power

attacks, and memory access pattern attacks unlikely. The entire training process

is protected and executed within the enclave, with minimal observable interactions.

Since the data shares exchange operations are uniform, no useful information about

the model or data can be inferred from observable behaviors.

HybridSGXDL

HybridSGXDL separates training into linear and non-linear operations. This means

the workflow and data process are not entirely oblivious to the participants, who

can identify which parts of the model involve convolution layers (linear operations)

and which parts involve non-linear operations like maxpool, ReLU, and softmax.

Participants can infer the structure of the CNN model by combining the data shares’

structures and dimensions. However, the initial random parameters of the model

are unknown to all parties outside the enclave, and only the updates in share format

are transferred among participants, making the real values of model parameters

unavailable to all parties.

In conclusion, HybridSGXDL may be susceptible to behavioral observation attacks to

guess the structure of the CNNmodel, but the model parameter values remain secure.

SGXDL provides stronger security protection than HybridSGXDL.

6.5.2 Gradients attack for Federated Learning

In traditional federated learning, attackers can obtain gradients transferred between

the server and clients to retrieve information about data samples, such as membership

and inference attacks. However, in SGXDLandHybridSGXDL,which use theweighted

federated learning (wFL) pattern, the gradients and model in SGXDL do not leave the

enclave because all computations are completed within the enclave. In HybridSGXDL,
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gradients are separated into random secret data shares, making the real values

unavailable to all parties. Therefore, SGXDL and HybridSGXDL protect gradients

within the enclave or encrypt them into random shares, mitigating the common threats

in traditional federated learning arising from gradient transfer processes.
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Conclusion

In this thesis, we explored the applications of SGX for enabling floating-point

plain-text computation within the enclave to advance privacy-preserving deep

learning computations. We proposed and implemented two secure plain-text

weighted federated learning computing infrastructures, SGXDL and HybridSGXDL,

leveraging the hardware security capabilities of Intel SGX. These infrastructures were

applied to practical deep learning models, demonstrating significant performance

improvements. Both SGXDL and HybridSGXDL surpass the efficiency of Piranha, a

multi-party computation (MPC) protocol enhancedwithGPU acceleration, as reported

in USENIX (2022). Our solutions achieve over 20× performance improvement and

can train models that Piranha cannot due to memory overflow issues. SGXDL and

HybridSGXDL make it feasible to securely train real-world neural networks with 100

million parameters of a floating data type (4 bytes), thus enabling secure training of

large language models (LLMs).

Several factors contribute to the superior efficiency of SGXDL and HybridSGXDL

over Piranha. These include the significant communication overhead for non-linear

operations in Piranha, suboptimal GPU utilization due to complex communication

synchronization, and the high computation workload for cryptographic and integer-

type computations, whereasGPUs are optimized for floating-point operations. SGXDL

excels in moderate computing sessions, prevalent in many industrial scenarios, while

HybridSGXDL outperforms for larger models and datasets. This advantage becomes

more apparent as the computation workload grows. SGXDL’s superior performance

in smaller and moderate sessions is attributed to lower communication overhead,
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with data communication required only at the beginning of training. Conversely,

HybridSGXDL’s higher time-consuming data exchange overhead between CPU and

GPU can take up to 2 seconds, compared to just 4 milliseconds of computing time.

However, for larger computation workloads, the GPU’s superior matrix computation

capabilities make HybridSGXDL the best performer.

7.1 Future Work

While SGXDL offers stronger security protection than HybridSGXDL, its efficiency in

training large models with extensive datasets is currently limited due to its reliance

on CPU-based computation. Future improvements could integrate GPU support

into SGX, significantly enhancing SGXDL’s efficiency and making its performance

comparable to standard plain-text deep learning training without security measures.

Achieving privacy-preserving training without sacrificing efficiency would then

become feasible.

Moreover, the secure infrastructures have been implemented on models such as

ResNet18 and VGG16 using double data types, demonstrating feasibility for large

language models (LLMs) with billions of floating-point parameters. Future work

can extend SGXDL and HybridSGXDL to larger models such as GPT and BERT.

Additionally, the secure channel designed in this thesis is at a preliminary level. Future

research can focus on developing a more detailed and secure channel mechanism to

further enhance the security of these computing infrastructures.
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Appendix A

First Appendix

A.1 Original Code for Pseudocode and model

structure

A.1.1 Conv
1 #define CONVOLUTION_FORWARD(input,output,weight,bias,action)
2 {
3 for(int x=0;x<GETLENGTH(weight);++x)
4 for(int y=0; y<GETLENGTH(*weight);++y)
5 CONVOLUTE_VALID(input[x], output[y], weight[x][y]);
6 FOREACH( j , GETLENGTH(output))
7 FOREACH( i , GETCOUNT(output[ j ]))
8 ((double *)output[ j ])[ i ]=action(((double *)output[ j ])[ i]
9 +bias[ j ]);
10 }
11

12 #define CONVOLUTE_VALID(input,output,weight)
13 {
14 FOREACH(o0,GETLENGTH(output))
15 FOREACH(o1,GETLENGTH(*(output)))
16 FOREACH(w0,GETLENGTH(weight))
17 FOREACH(w1,GETLENGTH(*(weight)))
18 (output)[o0][o1]+=(input)[o0+w0][o1+w1](weight)[w0][w1];
19 }

A.2 Original Code for Pseudocode

A.2.1 LeNet5(MNIST)
1  
2 #pragma once
3 #define LENGTH_KERNEL 5
4

5 #define LENGTH_FEATURE0 32
6 #define LENGTH_FEATURE1 (LENGTH_FEATURE0 - LENGTH_KERNEL + 1)
7 #define LENGTH_FEATURE2 (LENGTH_FEATURE1 >> 1)
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8 #define LENGTH_FEATURE3 (LENGTH_FEATURE2 - LENGTH_KERNEL + 1)
9 #define LENGTH_FEATURE4 (LENGTH_FEATURE3 >> 1)
10 #define LENGTH_FEATURE5 (LENGTH_FEATURE4 - LENGTH_KERNEL + 1)
11

12 #define INPUT 1
13 #define LAYER1 6
14 #define LAYER2 6
15 #define LAYER3 16
16 #define LAYER4 16
17 #define LAYER5 120
18 #define OUTPUT 10
19

20 #define ALPHA 0.5
21 #define PADDING 2
22

23 typedef unsigned char uint8;
24 typedef uint8 image[28][28];
25

26

27 typedef struct LeNet5

28 {
29 double weight0_1[INPUT][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
30 double weight2_3[LAYER2][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
31 double weight4_5[LAYER4][LAYER5][LENGTH_KERNEL][LENGTH_KERNEL];
32 double weight5_6[LAYER5*LENGTH_FEATURE5*LENGTH_FEATURE5][OUTPUT];
33

34 double bias0_1[LAYER1];
35 double bias2_3[LAYER3];
36 double bias4_5[LAYER5];
37 double bias5_6[OUTPUT];
38

39 }LeNet5;
40

41 typedef struct Feature

42 {
43 double input[INPUT][LENGTH_FEATURE0][LENGTH_FEATURE0];
44 double layer1[LAYER1][LENGTH_FEATURE1][LENGTH_FEATURE1];
45 double layer2[LAYER2][LENGTH_FEATURE2][LENGTH_FEATURE2];
46 double layer3[LAYER3][LENGTH_FEATURE3][LENGTH_FEATURE3];
47 double layer4[LAYER4][LENGTH_FEATURE4][LENGTH_FEATURE4];
48 double layer5[LAYER5][LENGTH_FEATURE5][LENGTH_FEATURE5];
49 double output[OUTPUT];
50 }Feature;
51

52 void TrainBatch(LeNet5 *lenet,image *inputs,uint8 * labels ,int batchSize);
53

54 void Train(LeNet5 *lenet, image input, uint8 label);
55

56 uint8 Predict(LeNet5 *lenet, image input, uint8 count);
57

58 void Init ia l (LeNet5 * lenet);
59 double relu(double x);

A.2.2 AlexNet(MNIST)
1  
2 #pragma once
3

4 #define LENGTH_KERNEL 3
5 #define MAXPOOL_SIZE 2
6

7 #define PADDING 1
8 #define LENGTH_FEATURE0 28
9 #define LENGTH_FEATURE1_1 (LENGTH_FEATURE0 - LENGTH_KERNEL + 2*PADDING+1)
10 #define LENGTH_FEATURE1_2 (LENGTH_FEATURE1_1/2)
11

12 #define LENGTH_FEATURE2_1 (LENGTH_FEATURE1_2 - LENGTH_KERNEL +2*PADDING + 1)
13 #define LENGTH_FEATURE2_2 (LENGTH_FEATURE2_1/2)
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14

15 #define LENGTH_FEATURE3_1 (LENGTH_FEATURE2_2 - LENGTH_KERNEL +2*PADDING+ 1)
16

17 #define LENGTH_FEATURE4_1 (LENGTH_FEATURE3_1 - LENGTH_KERNEL +2*PADDING+ 1)
18

19 #define MAXPOOL5_2_KERNEL 3
20 #define MAXPOOL5_2_STRIDE 2
21

22 #define LENGTH_FEATURE5_1 (LENGTH_FEATURE4_1 - LENGTH_KERNEL+2*PADDING+ 1)
23 #define LENGTH_FEATURE5_2 ((LENGTH_FEATURE5_1 - MAXPOOL5_2_KERNEL)/MAXPOOL5_2_STRIDE+ 1)
24

25 #define FC1_OUTPUT 1024
26 #define FC2_OUTPUT 512
27 #define FC3_OUTPUT 10
28

29

30 #define INPUT 1
31 #define LAYER1 32
32 #define LAYER2 64
33 #define LAYER3 128
34 #define LAYER4 256
35 #define LAYER5 256
36

37 #define OUTPUT 10
38

39 #define ALPHA 0.1
40

41

42 typedef unsigned char uint8;
43 typedef uint8 image[28][28];
44

45

46

47 typedef struct AlexNet

48 {
49 double weight1[INPUT][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];//Layer1 kernel

50 double weight2[LAYER1][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];//Layer2 Kernel

51 double weight3[LAYER2][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];//Layer3 Kernel

52 // double weight5_6 [LAYER5 * LENGTH_FEATURE5 * LENGTH_FEATURE5] [OUTPUT] ;

53 double weight4[LAYER3][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];//Layer4 Kernel

54 double weight5[LAYER4][LAYER5][LENGTH_KERNEL][LENGTH_KERNEL];//Layer5 Kernel

55

56

57 double fc1[LAYER5*LENGTH_FEATURE5_2*LENGTH_FEATURE5_2][FC1_OUTPUT];
58 double fc2[FC1_OUTPUT][FC2_OUTPUT];
59 double fc3[FC2_OUTPUT][FC3_OUTPUT];
60

61

62

63 double bias1[LAYER1];
64 double bias2[LAYER2];
65 double bias3[LAYER3];
66 double bias4[LAYER4];
67 double bias5[LAYER5];
68

69 double bias_fc1[FC1_OUTPUT];
70 double bias_fc2[FC2_OUTPUT];
71 double bias_fc3[FC3_OUTPUT];
72

73 }AlexNet;
74

75 typedef struct Feature

76 {
77 double input[INPUT][LENGTH_FEATURE0][LENGTH_FEATURE0];
78

79 double layer1_conv[LAYER1][LENGTH_FEATURE1_1][LENGTH_FEATURE1_1];
80 double layer1_pool[LAYER1][LENGTH_FEATURE1_2][LENGTH_FEATURE1_2];
81

82 double layer2_conv[LAYER2][LENGTH_FEATURE2_1][LENGTH_FEATURE2_1];
83 double layer2_pool[LAYER2][LENGTH_FEATURE2_2][LENGTH_FEATURE2_2];
84
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85 double layer3_conv[LAYER3][LENGTH_FEATURE3_1][LENGTH_FEATURE3_1];
86

87 double layer4_conv[LAYER4][LENGTH_FEATURE4_1][LENGTH_FEATURE4_1];
88

89

90 double layer5_conv[LAYER5][LENGTH_FEATURE5_1][LENGTH_FEATURE5_1];//256*7*7
91 double layer5_pool[LAYER5][LENGTH_FEATURE5_2][LENGTH_FEATURE5_2];//256*3*3
92

93 double fc1[FC1_OUTPUT];
94 double fc2[FC2_OUTPUT];
95 double output[FC3_OUTPUT];
96

97 }Feature;
98

99

100 typedef struct Feature_Pad

101 {
102 double input[INPUT][LENGTH_FEATURE0+2*PADDING][LENGTH_FEATURE0+2*PADDING];
103

104 double layer1_conv[LAYER1][LENGTH_FEATURE1_1][LENGTH_FEATURE1_1];
105 double layer1_pool[LAYER1][LENGTH_FEATURE1_2+2*PADDING][LENGTH_FEATURE1_2+2*PADDING];
106

107 double layer2_conv[LAYER2][LENGTH_FEATURE2_1][LENGTH_FEATURE2_1];
108 double layer2_pool[LAYER2][LENGTH_FEATURE2_2+2*PADDING][LENGTH_FEATURE2_2+2*PADDING];
109

110 double layer3_conv[LAYER3][LENGTH_FEATURE3_1+2*PADDING][LENGTH_FEATURE3_1+2*PADDING];
111

112 double layer4_conv[LAYER4][LENGTH_FEATURE4_1+2*PADDING][LENGTH_FEATURE4_1+2*PADDING];
113

114

115 double layer5_conv[LAYER5][LENGTH_FEATURE5_1][LENGTH_FEATURE5_1];//256*7*7
116 double layer5_pool[LAYER5][LENGTH_FEATURE5_2][LENGTH_FEATURE5_2];//256*3*3
117

118 double fc1[FC1_OUTPUT];
119 double fc2[FC2_OUTPUT];
120 double output[FC3_OUTPUT];
121

122 }Feature_Pad;
123

124 void TrainBatch(AlexNet *alexnet, image *inputs, uint8 * labels , int batchSize);
125

126 void Train(AlexNet *alexnet, image input, uint8 label);
127

128 uint8 Predict(AlexNet *alexnet, image input, uint8 count);
129

130 void Init ia l (AlexNet *alexnet);

A.2.3 ResNet18(MNIST)
1  
2

3 #pragma once
4

5 #define LENGTH_KERNEL 3
6

7 #define LENGTH_FEATURE0 32
8 #define LENGTH_FEATURE1 (LENGTH_FEATURE0 - LENGTH_KERNEL + 1)
9 #define LENGTH_FEATURE2 (LENGTH_FEATURE1 >> 1)
10 #define LENGTH_FEATURE3 (LENGTH_FEATURE2 - LENGTH_KERNEL + 1)
11 #define LENGTH_FEATURE4 (LENGTH_FEATURE3 >> 1)
12 #define LENGTH_FEATURE5 (LENGTH_FEATURE4 - LENGTH_KERNEL + 1)
13

14 #define INPUT 1
15 #define LAYER0 64
16 #define LAYER1 64
17 #define LAYER2 128
18 #define LAYER3 256
19 #define LAYER4 512
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20 #define OUTPUT 10
21

22 #define Res1 16
23 #define Res2 8
24 #define Res3 4
25 #define Res4 2
26 #define pool2_size 1
27

28 #define ALPHA 0.5
29 #define PADDING 1
30

31 typedef unsigned char uint8;
32 typedef uint8 image[28][28];
33

34 typedef struct ResBlock1

35 {
36 double weight1_1[LAYER0][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
37 double weight1_2[LAYER1][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
38

39 double weight2_1[LAYER1][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
40 double weight2_2[LAYER1][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
41

42

43 double bias1_1[LAYER1];
44 double bias1_2[LAYER1];
45 double bias2_1[LAYER1];
46 double bias2_2[LAYER1];
47 }ResBlock1;
48 typedef struct ResBlock2

49 {
50 double weight1_1[LAYER1][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];
51 double weight1_2[LAYER2][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];
52 double conv1[LAYER1][LAYER2][1][1];
53 double weight2_1[LAYER2][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];
54 double weight2_2[LAYER2][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];
55

56 double bias1_1[LAYER2];
57 double bias1_2[LAYER2];
58 double bias2_1[LAYER2];
59 double bias2_2[LAYER2];
60 }ResBlock2;
61 typedef struct ResBlock3

62 {
63 double weight1_1[LAYER2][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
64 double weight1_2[LAYER3][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
65 double conv1[LAYER2][LAYER3][1][1];
66 double weight2_1[LAYER3][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
67 double weight2_2[LAYER3][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
68

69 double bias1_1[LAYER3];
70 double bias1_2[LAYER3];
71 double bias2_1[LAYER3];
72 double bias2_2[LAYER3];
73 }ResBlock3;
74 typedef struct ResBlock4

75 {
76 double weight1_1[LAYER3][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
77 double weight1_2[LAYER4][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
78 double conv1[LAYER3][LAYER4][1][1];
79 double weight2_1[LAYER4][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
80 double weight2_2[LAYER4][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
81

82 double bias1_1[LAYER4];
83 double bias1_2[LAYER4];
84 double bias2_1[LAYER4];
85 double bias2_2[LAYER4];
86 }ResBlock4;
87

88

89 typedef struct ResNet18

90 {
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91 double weight1[INPUT][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];//Layer1 kernel

92 ResBlock1 res_block1;
93 ResBlock2 res_block2;
94 ResBlock3 res_block3;
95 ResBlock4 res_block4;
96

97 double fc[LAYER4*pool2_size*pool2_size][OUTPUT];
98 double bias1[LAYER1];
99 double bias_fc[OUTPUT];
100 }ResNet18;
101

102

103 typedef struct Res1_Feature

104 {
105 double conv1_1[LAYER1][Res1][Res1];
106 double conv1_2[LAYER1][Res1][Res1];
107

108 double conv2_1[LAYER1][Res1][Res1];
109 double conv2_2[LAYER1][Res1][Res1];
110 }Res1_Feature;
111

112

113 typedef struct Res2_Feature

114 {
115 double conv1_1[LAYER2][Res2][Res2];
116 double conv1_2[LAYER2][Res2][Res2];
117

118 double conv_res[LAYER2][Res2][Res2];
119

120 double conv2_1[LAYER2][Res2][Res2];
121 double conv2_2[LAYER2][Res2][Res2];
122 }Res2_Feature;
123

124 typedef struct Res3_Feature

125 {
126 double conv1_1[LAYER3][Res3][Res3];
127 double conv1_2[LAYER3][Res3][Res3];
128

129 double conv_res[LAYER3][Res3][Res3];
130

131 double conv2_1[LAYER3][Res3][Res3];
132 double conv2_2[LAYER3][Res3][Res3];
133 }Res3_Feature;
134

135 typedef struct Res4_Feature

136 {
137 double conv1_1[LAYER4][Res4][Res4];
138 double conv1_2[LAYER4][Res4][Res4];
139

140 double conv_res[LAYER4][Res4][Res4];
141

142 double conv2_1[LAYER4][Res4][Res4];
143 double conv2_2[LAYER4][Res4][Res4];
144 }Res4_Feature;
145

146

147

148

149

150 typedef struct Feature

151 {
152 double input[INPUT][LENGTH_FEATURE0][LENGTH_FEATURE0];
153 double conv1[LAYER0][LENGTH_FEATURE0][LENGTH_FEATURE0];
154 double pool1[LAYER0][16][16];
155 Res1_Feature res1f;
156 Res2_Feature res2f;
157 Res3_Feature res3f;
158 Res4_Feature res4f;
159

160 double pool2[LAYER4][pool2_size][pool2_size];
161 double output[OUTPUT];
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162

163

164

165 }Feature;
166

167 void TrainBatch(ResNet18 *resnet, image *inputs, uint8 * labels , int batchSize);
168

169 void Train(ResNet18 *resnet, image input, uint8 label);
170

171 uint8 Predict(ResNet18 *resnet, image input, uint8 count);
172

173 void Init ia l (ResNet18 *resnet);
174 double relu(double x);

A.2.4 VGG16(MNIST)
1 #pragma once
2

3 // #inc lude <charconv>

4 #define LENGTH_KERNEL 3
5

6 #define LENGTH_FEATURE0 32
7 #define LENGTH_FEATURE1 LENGTH_FEATURE0/2 //32

8 #define LENGTH_FEATURE2 LENGTH_FEATURE1/2 // 16

9 #define LENGTH_FEATURE3 LENGTH_FEATURE2/2 //8

10 #define LENGTH_FEATURE4 LENGTH_FEATURE3/2 //4

11 #define LENGTH_FEATURE5 LENGTH_FEATURE4/2 //2

12

13

14

15 #define INPUT 1
16 #define LAYER1 64
17

18

19 #define LAYER2 128
20

21 #define LAYER3 256
22

23

24 #define LAYER4 512
25

26 #define LAYER5 512
27 #define FC1 4096
28 #define FC2 4096
29

30 #define OUTPUT 10
31

32 #define ALPHA 0.5
33 #define PADDING 1
34

35 typedef unsigned char uint8;
36 typedef uint8 image[28][28];
37

38

39 typedef struct VGG

40 {
41 double weight1_1[INPUT][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
42 double weight1_2[LAYER1][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];
43 double weight2_1[LAYER1][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];
44 double weight2_2[LAYER2][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];
45

46

47 double weight3_1[LAYER2][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
48 double weight3_2[LAYER3][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
49 double weight3_3[LAYER3][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
50 double weight3_4[LAYER3][LAYER3][LENGTH_KERNEL][LENGTH_KERNEL];
51

52
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53 double weight4_1[LAYER3][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
54 double weight4_2[LAYER4][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
55 double weight4_3[LAYER4][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
56 double weight4_4[LAYER4][LAYER4][LENGTH_KERNEL][LENGTH_KERNEL];
57

58 double weight5_1[LAYER4][LAYER5][LENGTH_KERNEL][LENGTH_KERNEL];
59 double weight5_2[LAYER5][LAYER5][LENGTH_KERNEL][LENGTH_KERNEL];
60 double weight5_3[LAYER5][LAYER5][LENGTH_KERNEL][LENGTH_KERNEL];
61 double weight5_4[LAYER5][LAYER5][LENGTH_KERNEL][LENGTH_KERNEL];
62

63 double fc1[LAYER5*LENGTH_FEATURE5*LENGTH_FEATURE5][FC1];
64 double fc2[FC1][FC2];
65 double fc3[FC2][OUTPUT];
66

67 double bias1_1[LAYER1];
68 double bias1_2[LAYER1];
69

70 double bias2_1[LAYER2];
71 double bias2_2[LAYER2];
72

73 double bias3_1[LAYER3];
74 double bias3_2[LAYER3];
75 double bias3_3[LAYER3];
76 double bias3_4[LAYER3];
77

78 double bias4_1[LAYER4];
79 double bias4_2[LAYER4];
80 double bias4_3[LAYER4];
81 double bias4_4[LAYER4];
82

83

84 double bias5_1[LAYER5];
85 double bias5_2[LAYER5];
86 double bias5_3[LAYER5];
87 double bias5_4[LAYER5];
88

89 double bias_fc1[FC1];
90 double bias_fc2[FC2];
91 double bias_fc3[OUTPUT];
92 }VGG;
93

94 typedef struct Feature

95 {
96 double input[INPUT][LENGTH_FEATURE0][LENGTH_FEATURE0];
97

98 double layer1_conv1[LAYER1][LENGTH_FEATURE0][LENGTH_FEATURE0];
99 double layer1_conv2[LAYER1][LENGTH_FEATURE0][LENGTH_FEATURE0];
100 double layer1_pool[LAYER1][LENGTH_FEATURE1][LENGTH_FEATURE1];
101

102 double layer2_conv1[LAYER2][LENGTH_FEATURE1][LENGTH_FEATURE1];
103 double layer2_conv2[LAYER2][LENGTH_FEATURE1][LENGTH_FEATURE1];
104 double layer2_pool[LAYER2][LENGTH_FEATURE2][LENGTH_FEATURE2];
105

106 double layer3_conv1[LAYER3][LENGTH_FEATURE2][LENGTH_FEATURE2];
107 double layer3_conv2[LAYER3][LENGTH_FEATURE2][LENGTH_FEATURE2];
108 double layer3_conv3[LAYER3][LENGTH_FEATURE2][LENGTH_FEATURE2];
109 double layer3_conv4[LAYER3][LENGTH_FEATURE2][LENGTH_FEATURE2];
110 double layer3_pool[LAYER3][LENGTH_FEATURE3][LENGTH_FEATURE3];
111

112 double layer4_conv1[LAYER4][LENGTH_FEATURE3][LENGTH_FEATURE3];
113 double layer4_conv2[LAYER4][LENGTH_FEATURE3][LENGTH_FEATURE3];
114 double layer4_conv3[LAYER4][LENGTH_FEATURE3][LENGTH_FEATURE3];
115 double layer4_conv4[LAYER4][LENGTH_FEATURE3][LENGTH_FEATURE3];
116 double layer4_pool[LAYER4][LENGTH_FEATURE4][LENGTH_FEATURE4];
117

118 double layer5_conv1[LAYER5][LENGTH_FEATURE4][LENGTH_FEATURE4];
119 double layer5_conv2[LAYER5][LENGTH_FEATURE4][LENGTH_FEATURE4];
120 double layer5_conv3[LAYER5][LENGTH_FEATURE4][LENGTH_FEATURE4];
121 double layer5_conv4[LAYER5][LENGTH_FEATURE4][LENGTH_FEATURE4];
122 double layer5_pool[LAYER5][LENGTH_FEATURE5][LENGTH_FEATURE5];
123
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124 double fc1[FC1];
125 double fc2[FC2];
126 double output[OUTPUT];
127

128 }Feature;
129

130 void TrainBatch(VGG *vggnet, image *inputs, uint8 * labels , int batchSize);
131

132 void Train(VGG *vggnet, image input, uint8 label);
133

134 uint8 Predict(VGG *vggnet, image input, uint8 count);
135

136 void Init ia l (VGG *vggnet);
137 double relu(double x);

A.2.5 Transformer(MNIST)
1  
2 #pragma once
3 #define PI 3.1415926
4 #define LENGTH_KERNEL 5
5 #define MAXPOOL_SIZE 2
6

7 #define PADDING 1
8 #define LENGTH_FEATURE0 28
9 #define LENGTH_FEATURE1_1 (LENGTH_FEATURE0 - LENGTH_KERNEL + 2*PADDING+1) //28−3+2+1 −>28*28
10 #define LENGTH_FEATURE1_2 (LENGTH_FEATURE1_1/2) // 14*14
11

12 #define LENGTH_FEATURE2_1 (LENGTH_FEATURE1_2 - LENGTH_KERNEL +2*PADDING + 1) //14−3+2+1=14

13 #define LENGTH_FEATURE2_2 (LENGTH_FEATURE2_1/2) //7*7
14

15 #define LENGTH_FEATURE3_1 (LENGTH_FEATURE2_2 - LENGTH_KERNEL +2*PADDING+ 1) //7*7
16

17 #define LENGTH_FEATURE4_1 (LENGTH_FEATURE3_1 - LENGTH_KERNEL +2*PADDING+ 1)//7*7
18

19 #define MAXPOOL5_2_KERNEL 3
20 #define MAXPOOL5_2_STRIDE 2
21

22 #define LENGTH_FEATURE5_1 (LENGTH_FEATURE4_1 - LENGTH_KERNEL+2*PADDING+ 1) //7*7
23 #define LENGTH_FEATURE5_2 ((LENGTH_FEATURE5_1 - MAXPOOL5_2_KERNEL)/MAXPOOL5_2_STRIDE+ 1) // (7−3)/2 +1 = 3 no padding

24

25 #define FC 512
26

27

28 #define INPUT 1
29 #define LAYER1 16
30 #define LAYER2 32
31

32 #define OUTPUT 10
33

34 #define ALPHA 0.01
35 #define RES1_CHANNEL 16
36 #define RES2_CHANNEL 32
37

38 #define RES_LENGTH_KERNEL 3
39

40 #define INPUTCHANNEL 1
41 #define PATCH_SIZE 7
42 #define PATCH_NUM (28/PATCH_SIZE)*(28/PATCH_SIZE)
43 #define PATCH_DIM INPUTCHANNEL*PATCH_SIZE*PATCH_SIZE
44 #define DIM 64
45 #define DEPTH 6
46 #define HEADER 8
47 #define MLP_DIM 128
48

49 typedef unsigned char uint8;
50 typedef uint8 image[28][28];
51
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52 typedef struct ResBlock1

53 {
54 double weight1[RES1_CHANNEL][RES1_CHANNEL][RES_LENGTH_KERNEL][RES_LENGTH_KERNEL];
55 double weight2[RES1_CHANNEL][RES1_CHANNEL][RES_LENGTH_KERNEL][RES_LENGTH_KERNEL];
56 double bias1[RES1_CHANNEL];
57 double bias2[RES1_CHANNEL];
58 }ResBlock1;
59

60

61 typedef struct ResBlock2

62 {
63 double weight1[RES2_CHANNEL][RES2_CHANNEL][RES_LENGTH_KERNEL][RES_LENGTH_KERNEL];
64 double weight2[RES2_CHANNEL][RES2_CHANNEL][RES_LENGTH_KERNEL][RES_LENGTH_KERNEL];
65 double bias1[RES1_CHANNEL];
66 double bias2[RES1_CHANNEL];
67 }ResBlock2;
68

69

70 typedef struct Res1_Feature

71 {
72 double input_pad[RES1_CHANNEL][14][14];
73 double conv1[RES1_CHANNEL][12][12];
74

75 double conv1_pad[RES1_CHANNEL][14][14];
76 double conv2[RES1_CHANNEL][12][12];
77 }Res1_Feature;
78

79 typedef struct Res2_Feature

80 {
81 double input_pad[RES2_CHANNEL][6][6];
82 double conv1[RES2_CHANNEL][4][4];
83 double conv1_pad[RES2_CHANNEL][6][6];
84 double conv2[RES2_CHANNEL][4][4];
85 }Res2_Feature;
86

87

88

89 typedef struct ResNet

90 {
91 double weight1[INPUT][LAYER1][LENGTH_KERNEL][LENGTH_KERNEL];//Layer1 kernel

92 //maxpool

93 ResBlock1 res1;
94 double weight2[LAYER1][LAYER2][LENGTH_KERNEL][LENGTH_KERNEL];//Layer2 Kernel

95 //maxpool

96 ResBlock2 res2;
97

98 double fc[512][OUTPUT];
99

100

101 double bias1[LAYER1];
102 double bias2[LAYER2];
103

104

105 double bias_fc[OUTPUT];
106

107 }ResNet;
108

109

110

111

112 typedef struct Feature

113 {
114 double input[INPUT][LENGTH_FEATURE0][LENGTH_FEATURE0];
115 double conv1[LAYER1][24][24];
116 double max1[LAYER1][12][12];
117

118 Res1_Feature res1f;
119

120 double conv2[LAYER2][8][8];
121 double max2[LAYER2][4][4];
122 Res2_Feature res2f;
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123

124 double output[10];
125

126 }Feature;
127

128

129 typedef struct ViT

130 {
131 double pos_embedding[PATCH_NUM+1][DIM];// �������patchpos_embedding �������� ,
132 double patch_embedding_weight[INPUT][PATCH_DIM][DIM];// ������������������patchl inear
133 double cls_token[1][DIM];// �����patch_embedding
134 double patch_bias[DIM];
135

136 double q1x[HEADER][DIM][DIM];
137 double k1x[HEADER][DIM][DIM];
138 double v1x[HEADER][DIM][DIM];
139 double out_weight1[DIM][DIM];
140 double feed11[DIM][MLP_DIM];
141 double feed12[MLP_DIM][DIM];
142

143 double q2x[HEADER][DIM][DIM];
144 double k2x[HEADER][DIM][DIM];
145 double v2x[HEADER][DIM][DIM];
146 double out_weight2[DIM][DIM];
147 double feed21[DIM][MLP_DIM];
148 double feed22[MLP_DIM][DIM];
149

150

151 double q3x[HEADER][DIM][DIM];
152 double k3x[HEADER][DIM][DIM];
153 double v3x[HEADER][DIM][DIM];
154 double out_weight3[DIM][DIM];
155 double feed31[DIM][MLP_DIM];
156 double feed32[MLP_DIM][DIM];
157

158

159 double q4x[HEADER][DIM][DIM];
160 double k4x[HEADER][DIM][DIM];
161 double v4x[HEADER][DIM][DIM];
162 double out_weight4[DIM][DIM];
163 double feed41[DIM][MLP_DIM];
164 double feed42[MLP_DIM][DIM];
165

166 double q5x[HEADER][DIM][DIM];
167 double k5x[HEADER][DIM][DIM];
168 double v5x[HEADER][DIM][DIM];
169 double out_weight5[DIM][DIM];
170 double feed51[DIM][MLP_DIM];
171 double feed52[MLP_DIM][DIM];
172

173 double q6x[HEADER][DIM][DIM];
174 double k6x[HEADER][DIM][DIM];
175 double v6x[HEADER][DIM][DIM];
176 double out_weight6[DIM][DIM];
177 double feed61[DIM][MLP_DIM];
178 double feed62[MLP_DIM][DIM];
179

180 double mlp_w1[DIM][MLP_DIM];
181 double mlp_w2[MLP_DIM][OUTPUT];
182 }ViT;
183

184

185 typedef struct ViTFeature

186 {
187 double input[INPUT][28][28];
188 double input_patch[PATCH_NUM][INPUT][PATCH_SIZE][PATCH_SIZE];
189 double patch_embedding[PATCH_NUM][DIM];
190 double patch_embedding_cls[PATCH_NUM+1][DIM];
191 double q1[HEADER][PATCH_NUM+1][DIM];
192 double k1[HEADER][PATCH_NUM+1][DIM];
193 double v1[HEADER][PATCH_NUM+1][DIM];
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194 double z1[HEADER][PATCH_NUM+1][DIM];
195 double attention_out1[PATCH_NUM+1][DIM];
196 double out1[PATCH_NUM+1][DIM];
197 double trans_feed11[PATCH_NUM+1][MLP_DIM];
198 double trans_feed12[PATCH_NUM+1][DIM];
199

200 double q2[HEADER][PATCH_NUM+1][DIM];
201 double k2[HEADER][PATCH_NUM+1][DIM];
202 double v2[HEADER][PATCH_NUM+1][DIM];
203 double z2[HEADER][PATCH_NUM+1][DIM];
204 double attention_out2[PATCH_NUM+1][DIM];
205 double out2[PATCH_NUM+1][DIM];
206 double trans_feed21[PATCH_NUM+1][MLP_DIM];
207 double trans_feed22[PATCH_NUM+1][DIM];
208

209

210 double q3[HEADER][PATCH_NUM+1][DIM];
211 double k3[HEADER][PATCH_NUM+1][DIM];
212 double v3[HEADER][PATCH_NUM+1][DIM];
213 double z3[HEADER][PATCH_NUM+1][DIM];
214 double attention_out3[PATCH_NUM+1][DIM];
215 double out3[PATCH_NUM+1][DIM];
216 double trans_feed31[PATCH_NUM+1][MLP_DIM];
217 double trans_feed32[PATCH_NUM+1][DIM];
218

219

220 double q4[HEADER][PATCH_NUM+1][DIM];
221 double k4[HEADER][PATCH_NUM+1][DIM];
222 double v4[HEADER][PATCH_NUM+1][DIM];
223 double z4[HEADER][PATCH_NUM+1][DIM];
224 double attention_out4[PATCH_NUM+1][DIM];
225 double out4[PATCH_NUM+1][DIM];
226 double trans_feed41[PATCH_NUM+1][MLP_DIM];
227 double trans_feed42[PATCH_NUM+1][DIM];
228

229 double q5[HEADER][PATCH_NUM+1][DIM];
230 double k5[HEADER][PATCH_NUM+1][DIM];
231 double v5[HEADER][PATCH_NUM+1][DIM];
232 double z5[HEADER][PATCH_NUM+1][DIM];
233 double attention_out5[PATCH_NUM+1][DIM];
234 double out5[PATCH_NUM+1][DIM];
235 double trans_feed51[PATCH_NUM+1][MLP_DIM];
236 double trans_feed52[PATCH_NUM+1][DIM];
237

238 double q6[HEADER][PATCH_NUM+1][DIM];
239 double k6[HEADER][PATCH_NUM+1][DIM];
240 double v6[HEADER][PATCH_NUM+1][DIM];
241 double z6[HEADER][PATCH_NUM+1][DIM];
242 double attention_out6[PATCH_NUM+1][DIM];
243 double out6[PATCH_NUM+1][DIM];
244 double trans_feed61[PATCH_NUM+1][MLP_DIM];
245 double trans_feed62[PATCH_NUM+1][DIM];
246

247 double mlp1[MLP_DIM];
248 double mlp2[OUTPUT];
249 double output[OUTPUT];
250

251 }ViTFeature;
252

253

254

255

256 void TrainBatch(ViT *vit , image *inputs, uint8 * labels , int batchSize);
257

258 void Train(ViT *vit , image input, uint8 label);
259

260 uint8 Predict(ViT *vit , image input, uint8 count);
261

262 void Init ia l (ViT *vit );
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Appendix B

Appendix for additional theory

B.1 Softmax and Entropy Loss

Assume the n-output of CNNs: {o0, o1, ...on−1}, thesis’s deep learning apply softmax
and entropy loss as the loss function. Then the probabilities distribution of outputs

are modified as:

pi =
∂eoi

n−1∑
k=0

eok
(B.1)

Assume the one-hot label: {l0, l1, ...ln−1}, where lj = 1, li = 0(i ̸= j) The Entropy Loss

L are:

L = −
n−1∑
i=0

li ln pi (B.2)

And the gradients L versus output o are:

∂L

∂oi
=

 pi, i ̸= j

pj − 1, i = j

105


	Introduction
	Background
	Piranha: a secure GPU computing platform

	Problems
	Privacy Challenges in Federated Learning
	Overhead Challenges in Secure FL techniques
	Expanded Memory Requirements and Workload Growth Challenges
	Non-linear Operation Overhead Challenge in MPC

	Methodology
	Multi-Party Computation based Federated Learning
	Trusted Execution Environments(TEEs) - Intel SGX

	Solutions
	Intel-SGX Plain-text Secure Deep Learning(SGXDL)
	Hybrid Intel SGX-GPU Secure Deep Learning(HybridSGXDL)

	Purpose
	Hypothesis, Environment and Threat Model
	Hypothesis
	Environment
	Threat Model


	Theoretical Background
	Secret-Sharing based MPC
	Additive Secret Sharing
	Multi-Party Computation(MPC)

	Federated Learning
	History of Secret-Sharing Federated Learning
	Secure techniques for Federated Learning
	Data Split in Federated Learning
	Weighted Federated Learning
	Privacy analysis for real secret-sharing in SGXDL
	Privacy analysis for real secret-sharing in HybridSGXDL

	Deep Learning
	Overview of Deep Learning
	Training phase of Deep Learning
	Linear
	Non-Linear Function

	Intel SGX
	Hybrid AES-RSA Secure Channel

	SGXDL
	Motivation for SGXDL
	The structure of SGXDL
	Data shares distribution
	Secure Channel and Data Transfer initialization

	Task order and Synchronization
	Summary

	HybridSGXDL
	Model Weight Share Distribution
	Weight Share distribution
	Public key and Private key Exchange for secure channel
	Secure Data Transmission and Integration

	Training Dataset Share Distribution
	Linear and Non-Linear Computation for CNNs
	Linear Operations on local party's GPU
	Non Linear Operations in enclave

	Gradient Update
	Task order and Synchronization
	Summary

	The Deep Learning Models in the Implementation
	Results and Analysis
	Non-linear operation in Intel SGX
	Efficiency Comparison SGXDL vs. HybridSGXDL vs. Piranha
	SGXDL performance analysis
	SGXDL overhead analysis

	HybridSGXDL performance analysis
	Non-linear and Linear Computation
	Communication overhead
	Exchange overhead between CPU and GPU
	Accuracy

	Security Analysis
	Side-Channel Attack for Intel SGX
	Gradients attack for Federated Learning


	Conclusion
	Future Work

	First Appendix
	Original Code for Pseudocode and model structure
	Conv

	Original Code for Pseudocode
	LeNet5(MNIST)
	AlexNet(MNIST)
	ResNet18(MNIST)
	VGG16(MNIST)
	Transformer(MNIST)


	Appendix for additional theory
	Softmax and Entropy Loss


